Privy refers to a method that ensures privacy or confidentiality of data, models, or analytics processes. It involves approaches that protect sensitive information from unauthorized access, disclosure, or misuse while still allowing effective analysis or training.

 

Posts

DP-Mix: Mixup-based Data Augmentation for Differentially Private Learning

Data augmentation techniques, such as image transformations and combinations, are highly effective at improving the generalization of computer vision models, especially when training data is limited. However, such techniques are fundamentally incompatible with differentially private learning approaches, due to the latter’s built-in assumption that each training image’s contribution to the learned model is bounded. In this paper, we investigate why naive applications of multi-sample data augmentation techniques, such as mixup, fail to achieve good performance and propose two novel data augmentation techniques specifically designed for the constraints of differentially private learning. Our first technique, DP-Mix_Self, achieves SoTA classification performance across a range of datasets and settings by performing mixup on self-augmented data. Our second technique, DP-Mix_Diff, further improves performance by incorporating synthetic data from a pre-trained diffusion model into the mixup process. We open-source the code at https://github.com/wenxuan-Bao/DP-Mix.

Improving Face Recognition by Clustering Unlabeled Faces in the Wild

While deep face recognition has benefited significantly from large-scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in controlled settings, where the labeled and unlabeled data sets have no overlapping identities by construction. This is not realistic in large-scale face recognition, where one must contend with such overlaps, the frequency of which increases with the volume of data. Ignoring identity overlap leads to significant labeling noise, as data from the same identity is split into multiple clusters. To address this, we propose a novel identity separation method based on extreme value theory. It is formulated as an out-of-distribution detection algorithm, and greatly reduces the problems caused by overlapping-identity label noise. Considering cluster assignments as pseudo-labels, we must also overcome the labeling noise from clustering errors. We propose a modulation of the cosine loss, where the modulation weights correspond to an estimate of clustering uncertainty. Extensive experiments on both controlled and real settings demonstrate our method’s consistent improvements over supervised baselines, e.g., 11.6% improvement on IJB-A verification.

Private-kNN Practical Differential Privacy for Computer Vision

With increasing ethical and legal concerns on privacy for deep models in visual recognition, differential privacy has emerged as a mechanism to disguise membership of sensitive data in training datasets. Recent methods like Private Aggregation of Teacher Ensembles (PATE) leverage a large ensemble of teacher models trained on disjoint subsets of private data, to transfer knowledge to a student model with privacy guarantees. However, labeled vision data is often expensive and datasets, when split into many disjoint training sets, lead to significantly sub-optimal accuracy and thus hardly sustain good privacy bounds. We propose a practically data-efficient scheme based on private release of k-nearest neighbor (kNN) queries, which altogether avoids splitting the training dataset. Our approach allows the use of privacy-amplification by subsampling and iterative refinement of the kNN feature embedding. We rigorously analyze the theoretical properties of our method and demonstrate strong experimental performance on practical computer vision datasets for face attribute recognition and person reidentification. In particular, we achieve comparable or better accuracy than PATE while reducing more than 90% of the privacy loss, thereby providing the “most practical method to-date” for private deep learning in computer vision.