Prompt Tuning refers to a process in natural language processing (NLP) where the prompts or instructions given to a language model are adjusted or refined to improve the model’s performance or guide it to generate more desired outputs. In the context of NLP models, prompts are the input text or queries provided to the model to elicit specific responses.

Posts

Prompt-based Domain Discrimination for Multi-source Time Series Domain Adaptation

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, their primary focus has been on the common representations of time series data. This concentration might inadvertently lead to the oversight of valuable domain-specific information originating from different source domains. To bridge this gap, we introduce POND, a novel prompt-based deep learning model designed explicitly for multi-source time series domain adaptation. POND is tailored to address significant challenges, notably: 1) The unavailability of a quantitative relationship between meta-data information and time series distributions, and 2) The dearth of exploration into extracting domain specific meta-data information. In this paper, we present an instance-level prompt generator and afidelity loss mechanism to facilitate the faithful learning of meta-data information. Additionally, we propose a domain discrimination technique to discern domain-specific meta-data information from multiple source domains. Our approach involves a simple yet effective meta-learning algorithm to optimize the objective efficiently. Furthermore, we augment the model’s performance by incorporating the Mixture of Expert (MoE) technique. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing five datasets, which demonstrates that our proposed POND model outperforms the state-of the-art methods by up to 66% on the F1-score.

Dynamic Prompting: A Unified Framework for Prompt Tuning

Dynamic Prompting: A Unified Framework for Prompt Tuning It has been demonstrated that prompt tuning is highly effective in efficiently eliciting knowledge from language models (LMs). However, the prompt tuning still lags behind fine tuning, especially when the LMs are small. P tuning v2 (Liu et al., 2021b) makes it comparable with finetuning by adding continuous prompts for every layer of the pre trained model. However, prepending fixed soft prompts for all instances, regardless of their discrepancy, is doubtful. In particular, the inserted prompt position, length, and the representations ofprompts for diversified instances through different tasks could all affect the prompt tuning performance. To fill this gap, we propose dynamic prompting (DP): the position, length, and prompt representation can all be dynamically optimized with respect to different tasks and instances. We conduct comprehensive experiments on the SuperGlue benchmark tovalidate our hypothesis and demonstrate substantial improvements. We also derive a unified framework for supporting our dynamic prompting strategy. In particular, we use a simple learning network and Gumble Softmax for learning instance dependent guidance. Experimental results show that simple instance level position aware soft prompts can improve the classification accuracy of up to 6 points on average on five datasets, reducing its gap with fine tuning. Besides, we also prove its universal usefulness under full data, few shot, andmultitask regimes. Combining them together can even further unleash the power of DP, narrowing the distance between fine tuning.