Raffaele Montella works at University of Napoli, Parthenope.

Posts

Improving Real-time Data Streams Performance on Autonomous Surface Vehicles using DataX

In the evolving Artificial Intelligence (AI) era, the need for real-time algorithm processing in marine edge environments has become a crucial challenge. Data acquisition, analysis, and processing in complex marine situations require sophisticated and highly efficient platforms. This study optimizes real-time operations on a containerized distributed processing platform designed for Autonomous Surface Vehicles (ASV) to help safeguard the marine environment. The primary objective is to improve the efficiency and speed of data processing by adopting a microservice management system called DataX. DataX leverages containerization to break down operations into modular units, and resource coordination is based on Kubernetes. This combination of technologies enables more efficient resource management and real-time operations optimization, contributing significantly to the success of marine missions. The platform was developed to address the unique challenges of managing data and running advanced algorithms in a marine context, which often involves limited connectivity, high latencies, and energy restrictions. Finally, as a proof of concept to justify this platform’s evolution, experiments were carried out using a cluster of single-board computers equipped with GPUs, running an AI-based marine litter detection application and demonstrating the tangible benefits of this solution and its suitability for the needs of maritime missions.