Rama Chellappa works at University of Maryland.

Posts

Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis

Developing conditional generative models for text-to-video synthesis is an extremely challenging yet an important topic of research in machine learning. In this work, we address this problem by introducing Text-Filter conditioning Generative Adversarial Network (TFGAN), a conditional GAN model with a novel multi-scale text-conditioning scheme that improves text-video associations. By combining the proposed conditioning scheme with a deep GAN architecture, TFGAN generates high quality videos from text on challenging real-world video datasets. In addition, we construct a synthetic dataset of text-conditioned moving shapes to systematically evaluate our conditioning scheme. Extensive experiments demonstrate that TFGAN significantly outperforms existing approaches, and can also generate videos of novel categories not seen during training.

Zero-Shot Object Detection

We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories as in prior works on zero-shot classification. We present a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets – MSCOCO and VisualGenome, and present extensive empirical results in both the traditional and generalized zero-shot settings to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.