Ramin Moslemi is a former researcher at NEC Laboratories America, Inc.

Posts

Learning to Learn across Diverse Data Biases in Deep Face Recognition

Convolutional Neural Networks have achieved remarkable success in face recognition, in part due to the abundant availability of data. However, the data used for training CNNs is often imbalanced. Prior works largely focus on the long-tailed nature of face datasets in data volume per identity or focus on single bias variation. In this paper, we show that many bias variations such as ethnicity, head pose, occlusion and blur can jointly affect the accuracy significantly. We propose a sample level weighting approach termed Multi-variation Cosine Margin (MvCoM), to simultaneously consider the multiple variation factors, which orthogonally enhances the face recognition losses to incorporate the importance of training samples. Further, we leverage a learning to learn approach, guided by a held-out meta learning set and use an additive modeling to predict the MvCoM. Extensive experiments on challenging face recognition benchmarks demonstrate the advantages of our method in jointly handling imbalances due to multiple variations.

Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction

Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory prediction, learning multimodal outputs, and better predictions by imposing constraints using driving knowledge. Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many. But the impact of those methods in learning diverse hypotheses is under-studied as such objectives highly depend on their initialization for diversity. As our first contribution, we propose a novel Divide-And-Conquer (DAC) approach that acts as a better initialization technique to WTA objective, resulting in diverse outputs without any spurious modes. Our second contribution is a novel trajectory prediction framework called ALAN that uses existing lane centerlines as anchors to provide trajectories constrained to the input lanes. Our framework provides multi-agent trajectory outputs in a forward pass by capturing interactions through hypercolumn descriptors and incorporating scene information in the form of rasterized images and per-agent lane anchors. Experiments on synthetic and real data show that the proposed DAC captures the data distribution better compare to other WTA family of objectives. Further, we show that our ALAN approach provides on par or better performance with SOTA methods evaluated on Nuscenes urban driving benchmark.

Stochastic Decision-Making Model for Aggregation of Residential Units with PV-Systems and Storages

Many residential energy consumers have installed photovoltaic (PV) panels and energy storage systems. These residential users can aggregate and participate in the energy markets. A stochastic decision making model for an aggregation of these residential units for participation in two-settlement markets is proposed in this paper. Scenarios are generated using Seasonal Autoregressive Integrated Moving Average (SARIMA) model and joint probability distribution function of the forecast errors to model the uncertainties of the real-time prices, PV generations and demands. The proposed scenario generation model of this paper treats forecast errors as random variable, which allows to reflect new information observed in the real-time market into scenario generation process without retraining SARIMA or re-fitting probability distribution functions over the forecast errors. This approach significantly improves the computational time of the proposed model. A simulation study is conducted for an aggregation of 6 residential units, and the results highlights the benefits of aggregation as well as the proposed stochastic decision-making model.