RAN (Radio Access Network) is a critical component of the overall mobile network architecture, responsible for connecting individual user devices (such as smartphones, tablets, and other mobile devices) to the core network. The primary function of the RAN is to establish and maintain radio communication between the user devices and the mobile network infrastructure.

Posts

SkyRAN: A Self-Organizing LTE RAN in the Sky

We envision a flexible, dynamic airborne LTE infrastructure built upon Unmanned Autonomous Vehicles (UAVs) that will provide on-demand, on-time, network access, anywhere. In this paper, we design, implement and evaluate SkyRAN, a self-organizing UAV-based LTE RAN (Radio Access Network) that is a key component of this UAV LTE infrastructure network. SkyRAN determines the UAV’s operating position in 3D airspace so as to optimize connectivity to all the UEs on the ground. It realizes this by overcoming various challenges in constructing and maintaining radio environment maps to UEs that guide the UAV’s position in real-time. SkyRAN is designed to be scalable in that it can be quickly deployed to provide efficient connectivity even over a larger area. It is adaptive in that it reacts to changes in the terrain and UE mobility, to maximize LTE coverage performance while minimizing operating overhead. We implement SkyRAN on a DJI Matrice 600 Pro drone and evaluate it over a 90 000 m2 operating area. Our testbed results indicate that SkyRAN can place the UAV in the optimal location with about 30 secs of a measurement flight. On an average, SkyRAN achieves a throughput of 0.9 – 0.95X of optimal, which is about 1.5 – 2X over other popular baseline schemes.

SkyLiTE: End-to-End Design of Low-altitutde UAV Networks for Providing LTE Connectivity

Un-manned aerial vehicle (UAVs) have the potential to change the landscape of wide-area wireless connectivity by bringing them to areas where connectivity was sparing or non-existent (e.g. rural areas) or has been compromised due to disasters. While Google’s Project Loon and Facebook’s Project Aquila are examples of high-altitude, long-endurance UAV-based connectivity efforts in this direction, the telecom operators (e.g. AT&T and Verizon) have been exploring low-altitude UAV-based LTE solutions for on-demand deployments. Understandably, these projects are in their early stages and face formidable challenges in their realization and deployment. The goal of this document is to expose the reader to both the challenges as well as the potential offered by these unconventional connectivity solutions. We aim to explore the end-to-end design of such UAV-based connectivity networks particularly in the context of low-altitude UAV networks providing LTE connectivity. Specifically, we aim to highlight the challenges that span across multiple layers (access, core network, and backhaul) in an inter-twined manner as well as the richness and complexity of the design space itself. To help interested readers navigate this complex design space towards a solution, we also articulate the overview of one such end-to-end design, namely SkyLiTE– a self-organizing network of low-altitude UAVs that provide optimized LTE connectivity in a desired region.