Recommender Systems, also known as recommendation systems or engines, are software applications designed to suggest items or content to users based on their preferences, behaviors, or historical interactions. These systems aim to provide personalized recommendations for products, services, movies, music, articles, or other items, enhancing user experience and engagement. Recommender systems commonly use algorithms that analyze user data, such as past purchases, ratings, or browsing history, to predict and suggest items that the user might find interesting or relevant.

Posts

You Are What and Where You Are: Graph Enhanced Attention Network for Explainable POI Recommendation

Point-of-interest (POI) recommendation is an emerging area of research on location-based social networks to analyze user behaviors and contextual check-in information. For this problem, existing approaches, with shallow or deep architectures, have two major drawbacks. First, for these approaches, the attributes of individuals have been largely ignored. Therefore, it would be hard, if not impossible, to gather sufficient user attribute features to have complete coverage of possible motivation factors. Second, most existing models preserve the information of users or POIs by latent representations without explicitly highlighting salient factors or signals. Consequently, the trained models with unjustifiable parameters provide few persuasive rationales to explain why users favor or dislike certain POIs and what really causes a visit. To overcome these drawbacks, we propose GEAPR, a POI recommender that is able to interpret the POI prediction in an end-to-end fashion. Specifically, GEAPR learns user representations by aggregating different factors, such as structural context, neighbor impact, user attributes, and geolocation influence. GEAPR takes advantage of a triple attention mechanism to quantify the influences of different factors for each resulting recommendation and performs a thorough analysis of the model interpretability. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed model. GEAPR is deployed and under test on an internal web server. An example interface is presented to showcase its application on explainable POI recommendation.

Interpretable Click-Through Rate Prediction through Hierarchical Attention

Click-through rate (CTR) prediction is a critical task in online advertising and marketing. For this problem, existing approaches, with shallow or deep architectures, have three major drawbacks. First, they typically lack persuasive rationales to explain the outcomes of the models. Unexplainable predictions and recommendations may be difficult to validate and thus unreliable and untrustworthy. In many applications, inappropriate suggestions may even bring severe consequences. Second, existing approaches have poor efficiency in analyzing high-order feature interactions. Third, the polysemy of feature interactions in different semantic subspaces is largely ignored. In this paper, we propose InterHAt that employs a Transformer with multi-head self-attention for feature learning. On top of that, hierarchical attention layers are utilized for predicting CTR while simultaneously providing interpretable insights of the prediction results. InterHAt captures high-order feature interactions by an efficient attentional aggregation strategy with low computational complexity. Extensive experiments on four public real datasets and one synthetic dataset demonstrate the effectiveness and efficiency of InterHAt.