Remote Sensing refers to the utilization of a distributed acoustic sensing (DAS) system over a significant distance, specifically exceeding 1,000 kilometers. DAS is a technology that allows for the monitoring and detection of acoustic signals along an optical fiber. This involves a hybrid link composed of a mixture of field and laboratory fibers, and it employs bi-directional inline Raman amplification after each span to enhance signal quality.

Posts

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses

We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.

Coherent optical wireless communication link employing orbital angular momentum multiplexing in a ballistic and diffusive scattering medium

We experimentally investigate the scattering effect on an 80 Gbit/s orbital angular momentum (OAM) multiplexed optical wireless communication link. The power loss, mode purity, cross talk, and bit error rate performance are measured and analyzed for different OAM modes under scattering levels from ballistic to diffusive regions. Results show that (i) power loss is the main impairment in the ballistic scattering, while the mode purities of different OAM modes are not significantly affected; (ii) in the diffusive scattering, however, the performance of an OAM-multiplexed link further suffers from the increased cross talk between the different OAM modes.