Roadside LiDAR (Light Detection and Ranging) refers to the use of LiDAR technology for data collection and mapping along roadways and highways. LiDAR is a remote sensing technology that uses laser light to measure distances and create detailed, three-dimensional maps of the surroundings. Roadside LiDAR applications are particularly relevant in transportation and infrastructure management.


Efficient Compression Method for Roadside LiDAR Data

Efficient Compression Method for Roadside LiDAR Data Roadside LiDAR (Light Detection and Ranging) sensors are recently being explored for intelligent transportation systems aiming at safer and faster traffic management and vehicular operations. A key challenge in such systems is to efficiently transfer massive point-cloud data from the roadside LiDAR devices to the edge connected through a 5G network for real-time processing. In this paper, we consider the problem of compressing roadside (i.e. static) LiDAR data in real-time that provides a unique condition unexplored by current methods. Existing point-cloud compression methods assume moving LiDARs (that are mounted on vehicles) and do not exploit spatial consistency across frames over time.To this end, we develop a novel grouped wavelet technique for static roadside LiDAR data compression (i.e. SLiC). Our method compresses LiDAR data both spatially and temporally using a kd-tree data structure based on Haar wavelet coefficients. Experimental results show that SLiC can compress up to 1.9× more effectively than the state-of-the-art compression method can do. Moreover, SLiC is computationally more efficient to achieve 2× improvement in bandwidth usage over the best alternative. Even with this impressive gain in communication and storage efficiency, SLiC retains down-the-pipeline application’s accuracy.