Posts

SkyHAUL: A Self-Organizing Gigabit Network In The Sky

SkyHAUL: A Self-Organizing Gigabit Network In The Sky We design and build SkyHaul, the first large-scale, self-organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mm Wave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth-intensive, latency-sensitive cooperative applications (e.g. LTE coverage during disasters), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line-of-sight distances that limit individual UAVs today.To realize the challenging vision of deploying and maintaining an airborne, mm Wave mesh backhaul that caters to dynamic applications, SkyHaul’s design incorporates various elements: (i) Role-specific UAV operations that simultaneously address application tracking and backhaul connectivity (ii) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (iii)A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We evaluate the performance of SkyHaul through both real-world UAV flight operations as well as large scale simulations.

Redefining Passive in Backscattering with Commodity Devices

Redefining Passive in Backscattering with Commodity Devices The recent innovation of frequency-shifted (FS) backscatter allows for backscattering with commodity devices, which are inherently half-duplex. However, their reliance on oscillators for generating the frequency-shifting signal on the tag, forces them to incur the transient phase of the oscillator before steady-state operation. We show how the oscillator’s transient phase can pose a fundamental limitation for battery-less tags, resulting in significantly low bandwidth efficiencies, thereby limiting their practical usage.To this end, we propose a novel approach to FS-backscatter called xSHIFT that shifts the core functionality of FS away from the tag and onto the commodity device, thereby eliminating the need for on-tag oscillators altogether. The key innovation in xSHIFT lies in addressing the formidable challenges that arise in making this vision a reality. Specifically, xSHIFT’s design is built on the construct of beating twin carrier tones through a non-linear device to generate the desired FS signal – while the twin RF carriers are generated externally through a careful embedding into the resource units of commodity WiFi transmissions, the beating is achieved through a carefully-designed passive tag circuitry. We prototype xSHIFT’s tag, which is the same form factor as RFID Gen 2 tags, and characterize its promising real-world performance. We believe xSHIFT demonstrates one of the first, truly passive tag designs that has the potential to bring commodity backscatter to consumer spaces.

RFGo: A Seamless Self-checkout System for Apparel Stores Using RFID

RFGo: A Seamless Self-checkout System for Apparel Stores Using RFID Retailers are aiming to enhance customer experience by automating the checkout process. The key impediment here is the effort to manually align the product barcode with the scanner, requiring sequential handling of items without blocking the line-of-sight of the laser beam. While recent systems such as Amazon Go eliminate human involvement using an extensive array of cameras, we propose a privacy-preserving alternative, RFGo, that identifies products using passive RFID tags. Foregoing continuous monitoring of customers throughout the store, RFGo scans the products in a dedicated checkout area that is large enough for customers to simply walk in and stand until the scan is complete (in two seconds). Achieving such low-latency checkout is not possible with traditional RFID readers, which decode tags using one antenna at a time. To overcome this, RFGo includes a custom-built RFID reader that simultaneously decodes a tag’s response from multiple carrier-level synchronized antennas enabling a large set of tag observations in a very short time. RFGo then feeds these observations to a neural network that accurately distinguishes the products within the checkout area from those that are outside. We build a prototype of RFGo and evaluate its performance in challenging scenarios. Our experiments show that RFGo is extremely accurate, fast and well-suited for practical deployment in apparel stores.

DeepTrack: Grouping RFID Tags Based on Spatio-temporal Proximity in Retail Spaces

DeepTrack: Grouping RFID Tags Based on Spatio-temporal Proximity in Retail Spaces RFID applications for taking inventory and processing transactions in point-of-sale (POS) systems improve operational efficiency but are not designed to provide insights about customers’ interactions with products. We bridge this gap by solving the proximity grouping problem to identify groups of RFID tags that stay in close proximity to each other over time. We design DeepTrack, a framework that uses deep learning to automatically track the group of items carried by a customer during her shopping journey. This unearths hidden purchase behaviors helping retailers make better business decisions and paves the way for innovative shopping experiences such as seamless checkout (‘a la Amazon Go). DeepTrack employs a recurrent neural network (RNN) with the attention mechanism, to solve the proximity grouping problem in noisy settings without explicitly localizing tags. We tailor DeepTrack’s design to track not only mobile groups (products carried by customers) but also flexibly identify stationary tag groups (products on shelves). The key attribute of DeepTrack is that it only uses readily available tag data from commercial off-the-shelf RFID equipment. Our experiments demonstrate that, with only two hours training data, DeepTrack achieves a grouping accuracy of 98.18% (99.79%) when tracking eight mobile (stationary) groups.

SkyHaul: An Autonomous Gigabit Network Fabric In The Sky

SkyHaul: An Autonomous Gigabit Network Fabric In The Sky We design and build SKYHAUL, the first large scale, autonomous, self organizing network of Unmanned Aerial Vehicles (UAVs) that are connected using a mmWave wireless mesh backhaul. While the use of a mmWave backhaul paves the way for a new class of bandwidth intensive, latency sensitive cooperative applications (e.g., LTE coverage during disasters, surveillance during rescue in challenging terrains), the network of UAVs allows these applications to be executed at operating ranges that are far beyond the line of sight distances that limit individual UAVs today. To realize the challenging vision of deploying and maintaining an airborne mmWave mesh backhaul to cater to dynamic applications, SKYHAUL’s design incorporates various elements: (1) Role specific UAV operations that simultaneously address application tracking and backhaul connectivity (2) Novel algorithms to jointly address the problem of deployment (position, yaw of UAVs) and traffic routing across the UAV network, and (3) A provably optimal solution for fast and safe reconfiguration of UAV backhaul during application dynamics. We implement SKYHAUL on four DJI Matrice 600 Pros to demonstrate its practicality and performance through autonomous flight operations, complemented by large scale simulations.