Stream Analytics is a form of real-time data analysis that involves processing and extracting insights from data streams as they are generated. This is in contrast to traditional batch processing, which analyzes data at rest. Stream analytics is particularly useful for applications where timely decision-making is crucial, such as in finance, IoT (Internet of Things), and monitoring systems. It involves processing and analyzing data continuously as it flows through the system, allowing for rapid detection of patterns, anomalies, or actionable information in real-time.

Posts

Scale Up while Scaling Out Microservices in Video Analytics Pipelines

Modern video analytics applications comprise multiple microservices chained together as pipelines and executed on container orchestration platforms like Kubernetes. Kubernetes automatically handles the scaling of these microservices for efficient application execution. There are two popular choices for scaling microservices in Kubernetes i.e. scaling Out using Horizontal Pod Autoscaler (HPA) and scaling Up using Vertical Pod Autoscaler (VPA). Both these have been studied independently, but there isn’t much prior work studying the joint scaling of these two. This paper investigates joint scaling, i.e., scaling up while scaling out (HPA) is in action. In particular, we focus on scaling up CPU resources allocated to the application microservices. We show that allocating fixed resources does not work well for different workloads for video analytics pipelines. We also show that Kubernetes’ VPA in conjunction with HPA does not work well for varying application workloads. As a remedy to this problem, in this paper, we propose DataX AutoScaleUp, which performs efficiently scaling up of CPU resources allocated to microservices in video analytics pipelines while Kubernetes’ HPA is operational. DataX AutoScaleUp uses novel techniques to adjust the allocated computing resources to different microservices in video analytics pipelines to improve overall application performance. Through real-world video analytics applications like Face Recognition and Human Attributes, we show that DataX AutoScaleUp can achieve up to 1.45X improvement in application processing rate when compared to alternative approaches with fixed CPU allocation and dynamic CPU allocation using VPA.

DataX Allocator: Dynamic resource management for stream analytics at the Edge

Serverless edge computing aims to deploy and manage applications so that developers are unaware of challenges associated with dynamic management, sharing, and maintenance of the edge infrastructure. However, this is a non-trivial task because the resource usage by various edge applications varies based on the content in their input sensor data streams. We present a novel reinforcement-learning (RL) technique to maximize the processing rates of applications by dynamically allocating resources (like CPU cores or memory) to microservices in these applications. We model applications as analytics pipelines consisting of several microservices, and a pipeline’s processing rate directly impacts the accuracy of insights from the application. In our unique problem formulation, the state space or the number of actions of RL is independent of the type of workload in the microservices, the number of microservices in a pipeline, or the number of pipelines. This enables us to learn the RL model only once and use it many times to improve the accuracy of insights for a diverse set of AI/ML engines like action recognition or face recognition and applications with varying microservices. Our experiments with real-world applications, i.e., face recognition and action recognition, show that our approach outperforms other widely-used alternative approaches and achieves up to 2.5X improvement in the overall application processing rate. Furthermore, when we apply our RL model trained on a face recognition pipeline to a different and more complex action recognition pipeline, we obtain a 2X improvement in processing rate, thus showing the versatility and robustness of our RL model to pipeline changes.