Tianxiang Zhao works at Pennsylvania State University.

Posts

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off needs to be made between demonstration quality and quantity in practice. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, SDIL consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of SDIL in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.

Dynamic Causal Discovery in Imitation Learning

Dynamic Causal Discovery in Imitation Learning Using deep reinforcement learning (DRL) to recover expert policies via imitation has been found to be promising in a wide range of applications. However, it remains a difficult task to interpret the control policy learned by the agent. Difficulties mainly come from two aspects: 1) agents in DRL are usually implemented as deep neural networks (DNNs), which are black-box models and lack in interpretability, 2) the latent causal mechanism behind agents’ decisions may vary along the trajectory, rather than staying static throughout time steps. To address these difficulties, in this paper, we propose a self-explaining imitation framework, which can expose causal relations among states and action variables behind its decisions. Specifically, a dynamic causal discovery module is designed to extract the causal graph basing on historical trajectory and current states at each time step, and a causality encoding module is designed to model the interactions among variables with discovered causal edges. After encoding causality into variable embeddings, a prediction model conducts the imitation learning on top of obtained representations. These three components are trained end-to-end, and discovered causal edges can provide interpretations on rules captured by the agent. Comprehensive experiments are conducted on the simulation dataset to analyze its causal discovery capacity, and we further test it on a real-world medical dataset MIMIC-IV. Experimental results demonstrate its potential of providing explanations behind decisions.