Tingjun Chen works at Duke University.

Posts

Multi-span OSNR and GSNR Prediction using Cascaded Learning

We implement a cascaded learning framework leveraging three different EDFA and fiber component models for OSNR and GSNR prediction, achieving MAEs of 0.20 and 0.14 dBover a 5-span network under dynamic channel loading.

Scalable Machine Learning Models for Optical Transmission System Management

Optical transmission systems require accurate modeling and performance estimation for autonomous adaption and reconfiguration. We present efficient and scalable machine learning (ML) methods for modeling optical networks at component- and network-level with minimizeddata collection.

Multi-span optical power spectrum prediction using cascaded learning with one-shot end-to-end measurement

Scalable methods for optical transmission performance prediction using machine learning (ML) are studied in metro reconfigurable optical add-drop multiplexer (ROADM) networks. A cascaded learning framework is introduced to encompass the use of cascaded component models for end-to-end (E2E) optical path prediction augmented with different combinations of E2E performance data and models. Additional E2E optical path data and models are used to reduce the prediction error accumulation in the cascade. Off-line training (pre-trained prior to deployment) and transfer learning are used for component-level erbium-doped fiber amplifier (EDFA) gain models to ensure scalability. Considering channel power prediction, we show that the data collection processof the pre-trained EDFA model can be reduced to only 5% of the original training set using transfer learning. We evaluate the proposed method under three different topologies with field deployed fibers and achieve a mean absolute error of 0.16 dB with a single (one-shot) E2E measurement on the deployed 6-span system with 12 EDFAs.

Field Verification of Fault Localization with Integrated Physical-Parameter-Aware Methodology

We report the first field verification of fault localization in an optical line system (OLS) by integrating digital longitudinal monitoring and OLS calibration, highlighting changes in physical metrics and parameters. Use cases shown are degradation of a fiber span loss and optical amplifier noise figure.

Semi-Automatic Line-System Provisioning with Integrated Physical-Parameter-Aware Methodology: Field Verification and Operational Feasibility

We propose methods and an architecture to conduct measurements and optimize newly installed optical fiber line systems semi-automatically using integrated physics-aware technologies in a data center interconnection (DCI) transmission scenario. We demonstrate, for the first time to our knowledge, digital longitudinal monitoring (DLM) and optical line system (OLS) physical parameter calibration working together in real-time to extract physical link parameters for fast optical fiber line systems provisioning. Our methodology has the following advantages over traditional design: a minimized footprint at user sites, accurate estimation of the necessary optical network characteristics via complementary telemetry technologies, and the capability to conduct all operation work remotely. The last feature is crucial, as it enables remote operation to implement network design settings for immediate response to quality of transmission (QoT) degradation and reversion in the case of unforeseen problems. We successfully performed semi-automatic line system provisioning over field fiber network facilities at Duke University, Durham, North Carolina. The tasks of parameter retrieval, equipment setting optimization, and system setup/provisioning were completed within 1 h. The field operation was supervised by on-duty personnel who could access the system remotely from different time zones. By comparing Q-factor estimates calculated from the extracted link parameters with measured results from 400G transceivers, we confirmed that our methodology has a reduction in the QoT prediction errors ( 0.3 dB) over existing designs ( 0.6 dB). ©

4D Optical Link Tomography: First Field Demonstration of Autonomous Transponder Capable of Distance, Time, Frequency, and Polarization-Resolved Monitoring

We report the first field demonstration of 4D link tomography using a commercial transponder, which offers distance, time, frequency, and polarization-resolved monitoring. This scheme enables autonomous transponders that identify locations of multiple QoT degradation causes.

Inline Fiber Type Identification using In-Service Brillouin Optical Time Domain Analysis

We proposed the use of BOTDA as a monitoring tool to identify fiber types present in deployed hybrid-span fiber cables, to assist in network planning, setting optimal launch powers, and selecting correct modulation formats.

Modeling the Input Power Dependency in Transceiver BER-ONSR for QoT Estimation

We propose a method to estimate the input power dependency of the transceiver BER-OSNR characteristic. Experiments using commercial transceivers show that estimation error in Q-factor is less than 0.2 dB.

Multi-Span Optical Power Spectrum Prediction using ML-based EDFA Models and Cascaded Learning

We implement a cascaded learning framework using component-level EDFA models for optical power spectrum prediction in multi-span networks, achieving a mean absolute error of 0.17 dB across 6 spans and 12 EDFAs with only one-shot measurement.

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.