Tracking refers to the process of continuously monitoring or following the movement, progress, or changes of data over time. It involves the collection and analysis of data to understand the path, location, or status of the tracked entity.

Posts

RoVaR: Robust Multi-agent Tracking through Dual-layer Diversity in Visual and RF Sensor Fusion

The plethora of sensors in our commodity devices provides a rich substrate for sensor-fused tracking. Yet, today’s solutions are unable to deliver robust and high tracking accuracies across multiple agents in practical, everyday environments – a feature central to the future of immersive and collaborative applications. This can be attributed to the limited scope of diversity leveraged by these fusion solutions, preventing them from catering to the multiple dimensions of accuracy, robustness (diverse environmental conditions) and scalability (multiple agents) simultaneously.In this work, we take an important step towards this goal by introducing the notion of dual-layer diversity to the problem of sensor fusion in multi-agent tracking. We demonstrate that the fusion of complementary tracking modalities, – passive/relative (e.g. visual odometry) and active/absolute tracking (e.g.infrastructure-assisted RF localization) offer a key first layer of diversity that brings scalability while the second layer of diversity lies in the methodology of fusion, where we bring together the complementary strengths of algorithmic (for robustness) and data-driven (for accuracy) approaches. ROVAR is an embodiment of such a dual-layer diversity approach that intelligently attends to cross-modal information using algorithmic and data-driven techniques that jointly share the burden of accurately tracking multiple agents in the wild. Extensive evaluations reveal ROVAR’S multi-dimensional benefits in terms of tracking accuracy, scalability and robustness to enable practical multi-agent immersive applications in everyday environments.

DeepTrack: Grouping RFID Tags Based on Spatio-temporal Proximity in Retail Spaces

RFID applications for taking inventory and processing transactions in point-of-sale (POS) systems improve operational efficiency but are not designed to provide insights about customers’ interactions with products. We bridge this gap by solving the proximity grouping problem to identify groups of RFID tags that stay in close proximity to each other over time. We design DeepTrack, a framework that uses deep learning to automatically track the group of items carried by a customer during her shopping journey. This unearths hidden purchase behaviors helping retailers make better business decisions and paves the way for innovative shopping experiences such as seamless checkout (‘a la Amazon Go). DeepTrack employs a recurrent neural network (RNN) with the attention mechanism, to solve the proximity grouping problem in noisy settings without explicitly localizing tags. We tailor DeepTrack’s design to track not only mobile groups (products carried by customers) but also flexibly identify stationary tag groups (products on shelves). The key attribute of DeepTrack is that it only uses readily available tag data from commercial off-the-shelf RFID equipment. Our experiments demonstrate that, with only two hours training data, DeepTrack achieves a grouping accuracy of 98.18% (99.79%) when tracking eight mobile (stationary) groups.