Tsutomu Tajima works at NEC Corporation.

Posts

41.5-Tb/s Transmission Over 549 km of Field Deployed Fiber Using Throughput Optimized Probabilistic-Shaped 144QAM

We demonstrate high spectral efficiency transmission over 549 km of field-deployed single-mode fiber using probabilistic-shaped 144QAM. We achieved 41.5 Tb/s over the C-band at a spectral efficiency of 9.02 b/s/Hz using 32-Gbaud channels at a channel spacing of 33.33 GHz, and 38.1 Tb/s at a spectral efficiency of 8.28 b/s/Hz using 48-Gbaud channels at a channel spacing of 50 GHz. To the best of our knowledge, these are the highest total capacities and spectral efficiencies reported in a metro field environment using C-band only. In high spectral efficiency transmission, it is necessary to optimize back-to-back performance in order to maximize the link loss margin. Our results are enabled by the joint optimization of constellation shaping and coding overhead to minimize the gap to Shannon’s capacity, transmitter- and receiver-side digital backpropagation, signal clipping optimization, and I/Q imbalance compensation.

Optimization of Probabilistic Shaping Enabled Transceivers with Large Constellation Sizes for High Capacity Transmission

We study digital signal processing techniques to optimize the back-to-back performance of large probabilistic shaped constellations. We cover joint optimization of LDPC and constellation shaping, CD pre-compensation, clipping and I/Q imbalance compensation.

41.5 Tb/s Data Transport over 549 km of Field Deployed Fiber Using Throughput Optimized Probabilistic-Shaped 144QAM to Support Metro Network Capacity Demands

41.5-Tb/s over 549 km of deployed SSMF in Verizon’s network is achieved using probabilistic-shaped 144QAM to optimize throughput at ultra-fine granularity. This is the highest C-band only capacity and spectral efficiency in metro field environment.

ANN-Based Transfer Learning for QoT Prediction in Real-Time Mixed Line-Rate Systems

Quality of transmission prediction for real-time mixed line-rate systems is realized using artificial neural network based transfer learning with SDN orchestrating. 0.42 dB accuracy is achieved with a 1000 to 20 reduction in training samples.