Domain Generalization Guided by Gradient Signal to Noise Ratio of Parameters

Overfitting to the source domain is a common issue in gradient-based training of deep neural networks. To compensate for the over-parameterized models, numerous regularization techniques have been introduced such as those based on dropout. While these methods achieve significant improvements on classical benchmarks such as ImageNet, their performance diminishes with the introduction of domain shift in the test set i.e. when the unseen data comes from a significantly different distribution. In this paper, we move away from the classical approach of Bernoulli sampled dropout mask construction and propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network’s parameters. Specifically, at each training step, parameters with high GSNR will be discarded. Furthermore, we alleviate the burden of manually searching for the optimal dropout ratio by leveraging a meta-learning approach. We evaluate our method on standard domain generalization benchmarks and achieve competitive results on classification and face anti-spoofing problems.

Learning to Learn across Diverse Data Biases in Deep Face Recognition

Convolutional Neural Networks have achieved remarkable success in face recognition, in part due to the abundant availability of data. However, the data used for training CNNs is often imbalanced. Prior works largely focus on the long-tailed nature of face datasets in data volume per identity or focus on single bias variation. In this paper, we show that many bias variations such as ethnicity, head pose, occlusion and blur can jointly affect the accuracy significantly. We propose a sample level weighting approach termed Multi-variation Cosine Margin (MvCoM), to simultaneously consider the multiple variation factors, which orthogonally enhances the face recognition losses to incorporate the importance of training samples. Further, we leverage a learning to learn approach, guided by a held-out meta learning set and use an additive modeling to predict the MvCoM. Extensive experiments on challenging face recognition benchmarks demonstrate the advantages of our method in jointly handling imbalances due to multiple variations.

Cross-Domain Similarity Learning for Face Recognition in Unseen Domains

Face recognition models trained under the assumption of identical training and test distributions often suffer from poor generalization when faced with unknown variations, such as a novel ethnicity or unpredictable individual make-ups during test time. In this paper, we introduce a novel cross-domain metric learning loss, which we dub Cross-Domain Triplet (CDT) loss, to improve face recognition in unseen domains. The CDT loss encourages learning semantically meaningful features by enforcing compact feature clusters of identities from one domain, where the compactness is measured by underlying similarity metrics that belong to another training domain with different statistics. Intuitively, it discriminatively correlates explicit metrics derived from one domain, with triplet samples from another domain in a unified loss function to be minimized within a network, which leads to better alignment of the training domains. The network parameters are further enforced to learn generalized features under domain shift, in a model-agnostic learning pipeline. Unlike the recent work of Meta Face Recognition [18], our method does not require careful hard-pair sample mining and filtering strategy during training. Extensive experiments on various face recognition benchmarks show the superiority of our method in handling variations, compared to baseline and the state-of-the-art methods.

Improving Face Recognition by Clustering Unlabeled Faces in the Wild

While deep face recognition has benefited significantly from large-scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in controlled settings, where the labeled and unlabeled data sets have no overlapping identities by construction. This is not realistic in large-scale face recognition, where one must contend with such overlaps, the frequency of which increases with the volume of data. Ignoring identity overlap leads to significant labeling noise, as data from the same identity is split into multiple clusters. To address this, we propose a novel identity separation method based on extreme value theory. It is formulated as an out-of-distribution detection algorithm, and greatly reduces the problems caused by overlapping-identity label noise. Considering cluster assignments as pseudo-labels, we must also overcome the labeling noise from clustering errors. We propose a modulation of the cosine loss, where the modulation weights correspond to an estimate of clustering uncertainty. Extensive experiments on both controlled and real settings demonstrate our method’s consistent improvements over supervised baselines, e.g., 11.6% improvement on IJB-A verification.

Towards Universal Representation Learning for Deep Face Recognition

Recognizing wild faces is extremely hard as they appear with all kinds of variations. Traditional methods either train with specifically annotated variation data from target domains, or by introducing unlabeled target variation data to adapt from the training data. Instead, we propose a universal representation learning framework that can deal with larger variation unseen in the given training data without leveraging target domain knowledge. We firstly synthesize training data alongside some semantically meaningful variations, such as low resolution, occlusion and head pose. However, directly feeding the augmented data for training will not converge well as the newly introduced samples are mostly hard examples. We propose to split the feature embedding into multiple sub-embeddings, and associate different confidence values for each sub-embedding to smooth the training procedure. The sub-embeddings are further decorrelated by regularizing variation classification loss and variation adversarial loss on different partitions of them. Experiments show that our method achieves top performance on general face recognition datasets such as LFW and MegaFace, while significantly better on extreme benchmarks such as TinyFace and IJB-S.

Feature Transfer Learning for Face Recognition with Under-Represented Data

Despite the large volume of face recognition datasets, there is a significant portion of subjects, of which the samples are insufficient and thus under-represented. Ignoring such significant portion results in insufficient training data. Training with under-represented data leads to biased classifiers in conventionally-trained deep networks. In this paper, we propose a center-based feature transfer framework to augment the feature space of under-represented subjects from the regular subjects that have sufficiently diverse samples. A Gaussian prior of the variance is assumed across all subjects and the variance from regular ones are transferred to the under-represented ones. This encourages the under-represented distribution to be closer to the regular distribution. Further, an alternating training regimen is proposed to simultaneously achieve less biased classifiers and a more discriminative feature representation. We conduct ablative study to mimic the under-represented datasets by varying the portion of under-represented classes on the MS-Celeb-1M dataset. Advantageous results on LFW, IJB-A and MS-Celeb-1M demonstrate the effectiveness of our feature transfer and training strategy, compared to both general baselines and state-of-the-art methods. Moreover, our feature transfer successfully presents smooth visual interpolation, which conducts disentanglement to preserve identity of a class while augmenting its feature space with non-identity variations such as pose and lighting.

Unsupervised Cross Domain Distance Metric Adaptation with Feature Transfer Network

Unsupervised domain adaptation is an attractive avenue to enhance the performance of deep neural networks in a target domain, using labels only from a source domain. However, two predominant methods along this line, namely, domain divergence reduction learning and semi-supervised learning, are not readily applicable when the source and target domains do not share a common label space. This paper addresses the above scenario by learning a representation space that retains discriminative power on both the (labeled) source and (unlabeled) target domains while keeping the representations for the two domains well-separated. Inspired by a theoretical error bound on the target domain, we first reformulate the disjoint classification, where the source and target domains correspond to non-overlapping class labels, to a verification task. To handle both within-domain and cross-domain verification tasks, we propose a Feature Transfer Network (FTN) that separates the target features from the source features while simultaneously aligning the target features with a transformed source feature space. Moreover, we present a non-parametric variation of multi-class entropy minimization loss to further boost the discriminative power of FTNs on the target domain. In experiments, we demonstrate the effectiveness of FTNs through state-of-the-art performances on a cross-ethnicity face recognition problem.