The University of California, San Diego (UC San Diego), established in 1960, is a public research university comprising 12 undergraduate, graduate, and professional schools, as well as eight undergraduate residential colleges. It operates numerous organized research units, including those at the Scripps Institution of Oceanography, and is recognized for its extensive research activities. We have collaborated with UC San Diego on multimodal AI research, focusing on leveraging unlabeled data and pretraining strategies for vision-language tasks. Our joint work advances scalable AI systems capable of understanding complex, real-world inputs. Please read about our latest news and collaborative publications with the University of California, San Diego.

Posts

Gotta Adapt ’Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild

Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature level, inspired by insights from semi-supervised learning, we propose a classification-aware domain adversarial neural network that brings target examples into more classifiable regions of source domain. Next, we posit that computer vision insights are more amenable to injection at the pixel level. In particular, we use 3D geometry and image synthesis based on a generalized appearance flow to preserve identity across pose transformations, while using an attribute-conditioned CycleGAN to translate a single source into multiple target images that differ in lower-level properties such as lighting. Besides standard UDA benchmark, we validate on a novel and apt problem of car recognition in unlabeled surveillance images using labeled images from the web, handling explicitly specified, nameable factors of variation through pixel-level and implicit, unspecified factors through feature-level adaptation.

Feature Transfer Learning for Face Recognition with Under-Represented Data

Despite the large volume of face recognition datasets, there is a significant portion of subjects, of which the samples are insufficient and thus under-represented. Ignoring such significant portion results in insufficient training data. Training with under-represented data leads to biased classifiers in conventionally-trained deep networks. In this paper, we propose a center-based feature transfer framework to augment the feature space of under-represented subjects from the regular subjects that have sufficiently diverse samples. A Gaussian prior of the variance is assumed across all subjects and the variance from regular ones are transferred to the under-represented ones. This encourages the under-represented distribution to be closer to the regular distribution. Further, an alternating training regimen is proposed to simultaneously achieve less biased classifiers and a more discriminative feature representation. We conduct ablative study to mimic the under-represented datasets by varying the portion of under-represented classes on the MS-Celeb-1M dataset. Advantageous results on LFW, IJB-A and MS-Celeb-1M demonstrate the effectiveness of our feature transfer and training strategy, compared to both general baselines and state-of-the-art methods. Moreover, our feature transfer successfully presents smooth visual interpolation, which conducts disentanglement to preserve identity of a class while augmenting its feature space with non-identity variations such as pose and lighting.

Learning to Look around Objects for Top-View Representations of Outdoor Scenes

Given a single RGB image of a complex outdoor road scene in the perspective view, we address the novel problem of estimating an occlusion-reasoned semantic scene layout in the top-view. This challenging problem not only requires an accurate understanding of both the 3D geometry and the semantics of the visible scene, but also of occluded areas. We propose a convolutional neural network that learns to predict occluded portions of the scene layout by looking around foreground objects like cars or pedestrians. But instead of hallucinating RGB values, we show that directly predicting the semantics and depths in the occluded areas enables a better transformation into the top-view. We further show that this initial top-view representation can be significantly enhanced by learning priors and rules about typical road layouts from simulated or, if available, map data. Crucially, training our model does not require costly or subjective human annotations for occluded areas or the top-view, but rather uses readily available annotations for standard semantic segmentation in the perspective view. We extensively evaluate and analyze our approach on the KITTI and Cityscapes data sets.

Hierarchical Metric Learning and Matching for 2D and 3D Geometric Correspondences

Interest point descriptors have fueled progress on almost every problem in computer vision. Recent advances in deep neural networks have enabled task-specific learned descriptors that outperform hand-crafted descriptors on many problems. We demonstrate that commonly used metric learning approaches do not optimally leverage the feature hierarchies learned in a Convolutional Neural Network (CNN), especially when applied to the task of geometric feature matching. While a metric loss applied to the deepest layer of a CNN, is often expected to yield ideal features irrespective of the task, in fact the growing receptive field as well as striding effects cause shallower features to be better at high precision matching tasks. We leverage this insight together with explicit supervision at multiple levels of the feature hierarchy for better regularization, to learn more effective descriptors in the context of geometric matching tasks. Further, we propose to use activation maps at different layers of a CNN, as an effective and principled replacement for the multi-resolution image pyramids often used for matching tasks. We propose concrete CNN architectures employing these ideas and evaluate them on multiple datasets for 2D and 3D geometric matching as well as optical flow, demonstrating state-of-the-art results and generalization across datasets.

Feature Transfer Learning for Deep Face Recognition with Long-Tail Data

Real-world face recognition datasets exhibit long-tail characteristics, which results in biased classifiers in conventionally-trained deep neural networks, or insufficient data when long-tail classes are ignored. In this paper, we propose to handle long-tail classes in the training of a face recognition engine by augmenting their feature space under a center-based feature transfer framework. A Gaussian prior is assumed across all the head (regular) classes and the variance from regular classes are transferred to the long-tail class representation. This encourages the long-tail distribution to be closer to the regular distribution, while enriching and balancing the limited training data. Further, an alternating training regimen is proposed to simultaneously achieve less biased decision boundaries and a more discriminative feature representation. We conduct empirical studies that mimic long-tail datasets by limiting the number of samples and the proportion of long-tail classes on the MS-Celeb-1M dataset. We compare our method with baselines not designed to handle long-tail classes and also with state-of-the-art methods on face recognition benchmarks. State-of-the-art results on LFW, IJB-A and MS-Celeb-1M datasets demonstrate the effectiveness of our feature transfer approach and training strategy. Finally, our feature transfer allows smooth visual interpolation, which demonstrates disentanglement to preserve identity of a class while augmenting its feature space with non-identity variations.

SVBRDF-Invariant Shape and Reflectance Estimation from a Light-Field Camera

Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.

Joint Pixel and Feature-level Domain Adaptation in the Wild

Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature level, inspired by insights from semi-supervised learning in a domain adversarial neural network, we propose a novel regularization in the form of domain adversarial entropy minimization. Next, we posit that insights from computer vision are more amenable to injection at the pixel level and specifically address the key challenge of adaptation across different semantic levels. In particular, we use 3D geometry and image synthetization based on a generalized appearance flow to preserve identity across higher-level pose transformations, while using an attribute-conditioned CycleGAN to translate a single source into multiple target images that differ in lower-level properties such as lighting. We validate on a novel problem of car recognition in unlabeled surveillance images using labeled images from the web, handling explicitly specified, nameable factors of variation through pixel-level and implicit, unspecified factors through feature-level adaptation. Extensive experiments achieve state-of-the-art results, demonstrating the effectiveness of complementing feature and pixel-level information via our proposed domain adaptation method.