Video Domain Adaptation is a technique in machine learning where a model trained on data from one domain is adapted to perform well on data from a different domain. In the context of video, this could involve adapting a model trained on videos from one source to work well on videos from a different source.

Posts

Source-Free Video Domain Adaptation with Spatial-Temporal-Historical Consistency Learning

Source-Free Video Domain Adaptation with Spatial-Temporal-Historical Consistency Learning Source-free domain adaptation (SFDA) is an emerging research topic that studies how to adapt a pretrained source model using unlabeled target data. It is derived from unsupervised domain adaptation but has the advantage of not requiring labeled source data to learn adaptive models. This makes it particularly useful in real-world applications where access to source data is restricted. While there has been some SFDA work for images, little attention has been paid to videos. Naively extending image-based methods to videos without considering the unique properties of videos often leads to unsatisfactory results. In this paper, we propose a simple and highly flexible method for Source-Free Video Domain Adaptation (SFVDA), which extensively exploits consistency learning for videos from spatial, temporal, and historical perspectives. Our method is based on the assumption that videos of the same action category are drawn from the same low-dimensional space, regardless of the spatio-temporal variations in the high-dimensional space that cause domain shifts. To overcome domain shifts, we simulate spatio-temporal variations by applying spatial and temporal augmentations on target videos, and encourage the model to make consistent predictions from a video and its augmented versions. Due to the simple design, our method can be applied to various SFVDA settings, and experiments show that our method achieves state-of-the-art performance for all the settings.