Wang-Pin Hsiung works at NEC Laboratories America, Inc.

Posts

AnB: Application-In-A-Box To Rapidly Deploy and Self-Optimize 5G Apps

We present Application in a Box (AnB) product concept aimed at simplifying the deployment and operation of remote 5G applications. AnB comes pre-configured with all necessary hardware and software components, including sensors like cameras, hardware and software components for a local 5G wireless network, and 5G-ready apps. Enterprises can easily download additional apps from an App Store. Setting up a 5G infrastructure and running applications on it is a significant challenge, but AnB is designed to make it fast, convenient, and easy, even for those without extensive knowledge of software, computers, wireless networks, or AI-based analytics. With AnB, customers only need to open the box, set up the sensors, turn on the 5G networking and edge computing devices, and start running their applications. Our system software automatically deploys and optimizes the pipeline of microservices in the application on a tiered computing infrastructure that includes device, edge, and cloud computing. Dynamic resource management, placement of critical tasks for low-latency response, and dynamic network bandwidth allocation for efficient 5G network usage are all automatically orchestrated. AnB offers cost savings, simplified setup and management, and increased reliability and security. We’ve implemented several real-world applications, such as collision prediction at busy traffic light intersections and remote construction site monitoring using video analytics. With AnB, deployment and optimization effort can be reduced from several months to just a few minutes. This is the first-of-its-kind approach to easing deployment effort and automating self-optimization of the application during system operation.

Application-specific, Dynamic Reservation of 5G Compute and Network Resources by using Reinforcement Learning

5G services and applications explicitly reserve compute and network resources in today’s complex and dynamic infrastructure of multi-tiered computing and cellular networking to ensure application-specific service quality metrics, and the infrastructure providers charge the 5G services for the resources reserved. A static, one-time reservation of resources at service deployment typically results in extended periods of under-utilization of reserved resources during the lifetime of the service operation. This is due to a plethora of reasons like changes in content from the IoT sensors (for example, change in number of people in the field of view of a camera) or a change in the environmental conditions around the IoT sensors (for example, time of the day, rain or fog can affect data acquisition by sensors). Under-utilization of a specific resource like compute can also be due to temporary inadequate availability of another resource like the network bandwidth in a dynamic 5G infrastructure. We propose a novel Reinforcement Learning-based online method to dynamically adjust an application’s compute and network resource reservations to minimize under-utilization of requested resources, while ensuring acceptable service quality metrics. We observe that a complex application-specific coupling exists between the compute and network usage of an application. Our proposed method learns this coupling during the operation of the service, and dynamically modulates the compute and network resource requests to mimimize under-utilization of reserved resources. Through experimental evaluation using real-world video analytics application, we show that our technique is able to capture complex compute-network coupling relationship in an online manner i.e. while the application is running, and dynamically adapts and saves up to 65% compute and 93% network resources on average (over multiple runs), without significantly impacting application accuracy.

ROMA: Resource Orchestration for Microservices-based 5G Applications

With the growth of 5G, Internet of Things (IoT), edge computing and cloud computing technologies, the infrastructure (compute and network) available to emerging applications (AR/VR, autonomous driving, industry 4.0, etc.) has become quite complex. There are multiple tiers of computing (IoT devices, near edge, far edge, cloud, etc.) that are connected with different types of networking technologies (LAN, LTE, 5G, MAN, WAN, etc.). Deployment and management of applications in such an environment is quite challenging. In this paper, we propose ROMA, which performs resource orchestration for microservices-based 5G applications in a dynamic, heterogeneous, multi-tiered compute and network fabric. We assume that only application-level requirements are known, and the detailed requirements of the individual microservices in the application are not specified. As part of our solution, ROMA identifies and leverages the coupling relationship between compute and network usage for various microservices and solves an optimization problem in order to appropriately identify how each microservice should be deployed in the complex, multi-tiered compute and network fabric, so that the end-to-end application requirements are optimally met. We implemented two real-world 5G applications in video surveillance and intelligent transportation system (ITS) domains. Through extensive experiments, we show that ROMA is able to save up to 90%, 55% and 44% compute and up to 80%, 95% and 75% network bandwidth for the surveillance (watchlist) and transportation application (person and car detection), respectively. This improvement is achieved while honoring the application performance requirements, and it is over an alternative scheme that employs a static and overprovisioned resource allocation strategy by ignoring the resource coupling relationships.

F3S: Free Flow Fever Screening

Identification of people with elevated body temperature can reduce or dramatically slow down the spread of infectious diseases like COVID-19. We present a novel fever-screening system, F 3 S, that uses edge machine learning techniques to accurately measure core body temperatures of multiple individuals in a free-flow setting. F 3 S performs real-time sensor fusion of visual camera with thermal camera data streams to detect elevated body temperature, and it has several unique features: (a) visual and thermal streams represent very different modalities, and we dynamically associate semantically-equivalent regions across visual and thermal frames by using a new, dynamic alignment technique that analyzes content and context in real-time, (b) we track people through occlusions, identify the eye (inner canthus), forehead, face and head regions where possible, and provide an accurate temperature reading by using a prioritized refinement algorithm, and (c) we robustly detect elevated body temperature even in the presence of personal protective equipment like masks, or sunglasses or hats, all of which can be affected by hot weather and lead to spurious temperature readings. F 3 S has been deployed at over a dozen large commercial establishments, providing contact-less, free-flow, real-time fever screening for thousands of employees and customers in indoors and outdoor settings.

ECO: Edge-Cloud Optimization of 5G applications

Centralized cloud computing with 100+ milliseconds network latencies cannot meet the tens of milliseconds to sub-millisecond response times required for emerging 5G applications like autonomous driving, smart manufacturing, tactile internet, and augmented or virtual reality. We describe a new, dynamic runtime that enables such applications to make effective use of a 5G network, computing at the edge of this network, and resources in the centralized cloud, at all times. Our runtime continuously monitors the interaction among the microservices, estimates the data produced and exchanged among the microservices, and uses a novel graph min-cut algorithm to dynamically map the microservices to the edge or the cloud to satisfy application-specific response times. Our runtime also handles temporary network partitions, and maintains data consistency across the distributed fabric by using microservice proxies to reduce WAN bandwidth by an order of magnitude, all in an application-specific manner by leveraging knowledge about the application’s functions, latency-critical pipelines and intermediate data. We illustrate the use of our runtime by successfully mapping two complex, representative real-world video analytics applications to the AWS/Verizon Wavelength edge-cloud architecture, and improving application response times by 2x when compared with a static edge-cloud implementation.