Sound Event Classification meets Data Assimilation with Distributed Fiber-Optic Sensing
Distributed Fiber-Optic Sensing (DFOS) is a promising technique for large-scale acoustic monitoring. However, its wide variation in installation environments and sensor characteristics causes spatial heterogeneity. This heterogeneity makes it difficult to collect representative training data. It also degrades the generalization ability of learning-based models, such as fine-tuning methods, under a limited amount of training data. To address this, we formulate Sound Event Classification (SEC) as data assimilation in an embedding space. Instead of training models, we infer sound event classes by combining pretrained audio embeddings with simulated DFOS signals. Simulated DFOS signals are generated by applying various frequency responses and noise patterns to microphone data, which allows for diverse prior modeling of DFOS conditions. Our method achieves out-of-domain (OOD) robust classification without requiring model training. The proposed method achieved accuracy improvements of 6.42, 14.11, and 3.47 percentage points compared with conventional zero-shot and two types of fine-tune methods, respectively. By employing the simulator in the framework of data assimilation, the proposed method also enables precise estimation of physical parameters from observed DFOS signals.


