Wei Cheng NEC Labs America

Wei Cheng

Senior Researcher

Data Science and System Security

Posts

SEED: Sound Event Early Detection via Evidential Uncertainty

Sound Event Early Detection (SEED) is an essential task in recognizing the acoustic environments and soundscapes. However, most of the existing methods focus on the offline sound event detection, which suffers from the over-confidence issue of early-stage event detection and usually yield unreliable results. To solve the problem, we propose a novel Polyphonic Evidential Neural Network (PENet) to model the evidential uncertainty of the class probability with Beta distribution. Specifically, we use a Beta distribution to model the distribution of class probabilities, and the evidential uncertainty enriches uncertainty representation with evidence information, which plays a central role in reliable prediction. To further improve the event detection performance, we design the backtrack inference method that utilizes both the forward and backward audio features of an ongoing event. Experiments on the DESED database show that the proposed method can simultaneously improve 13.0% and 3.8% in time delay and detection F1 score compared to the state-of-the-art methods.

Superclass-Conditional Gaussian Mixture Model for Coarse-To-Fine Few-Shot Learning

Learning fine-grained embeddings is essential for extending the generalizability of models pre-trained on “coarse” labels (e.g., animals). It is crucial to fields for which fine-grained labeling (e.g., breeds of animals) is expensive, but fine-grained prediction is desirable, such as medicine. The dilemma necessitates adaptation of a “coarsely” pre-trained model to new tasks with a few “finer-grained” training labels. However, coarsely supervised pre-training tends to suppress intra-class variation, which is vital for cross-granularity adaptation. In this paper, we develop a training framework underlain by a novel superclass-conditional Gaussian mixture model (SCGM). SCGM imitates the generative process of samples from hierarchies of classes through latent variable modeling of the fine-grained subclasses. The framework is agnostic to the encoders and only adds a few distribution related parameters, thus is efficient, and flexible to different domains. The model parameters are learned end-to-end by maximum-likelihood estimation via a principled Expectation-Maximization algorithm. Extensive experiments on benchmark datasets and a real-life medical dataset indicate the effectiveness of our method.

Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph

We target the task of cross-lingual Machine Reading Comprehension (MRC) in the direct zero-shot setting, by incorporating syntactic features from Universal Dependencies (UD), and the key features we use are the syntactic relations within each sentence. While previous work has demonstrated effective syntax-guided MRC models, we propose to adopt the inter-sentence syntactic relations, in addition to the rudimentary intra-sentence relations, to further utilize the syntactic dependencies in the multi-sentence input of the MRC task. In our approach, we build the Inter-Sentence Dependency Graph (ISDG) connecting dependency trees to form global syntactic relations across sentences. We then propose the ISDG encoder that encodes the global dependency graph, addressing the inter-sentence relations via both one-hop and multi-hop dependency paths explicitly. Experiments on three multilingual MRC datasets (XQuAD, MLQA, TyDiQA-GoldP) show that our encoder that is only trained on English is able to improve the zero-shot performance on all 14 test sets covering 8 languages, with up to 3.8 F1 / 5.2 EM improvement on-average, and 5.2 F1 / 11.2 EM on certain languages. Further analysis shows the improvement can be attributed to the attention on the cross-linguistically consistent syntactic path. Our code is available at https://github.com/lxucs/multilingual-mrc-isdg.

InfoGCL: Information-Aware Graph Contrastive Learning

InfoGCL: Information-Aware Graph Contrastive Learning Various graph contrastive learning models have been proposed to improve the performance of tasks on graph datasets in recent years. While effective and prevalent, these models are usually carefully customized. In particular, despite all recent work create two contrastive views, they differ in a variety of view augmentations, architectures, and objectives. It remains an open question how to build your graph contrastive learning model from scratch for particular graph tasks and datasets. In this work, we aim to fill this gap by studying how graph information is transformed and transferred during the contrastive learning process, and proposing an information-aware graph contrastive learning framework called InfoGCL. The key to the success of the proposed framework is to follow the Information Bottleneck principle to reduce the mutual information between contrastive parts while keeping task-relevant information intact at both the levels of the individual module and the entire framework so that the information loss during graph representation learning can be minimized. We show for the first time that all recent graph contrastive learning methods can be unified by our framework. Based on theoretical and empirical analysis on benchmark graph datasets, we show that InfoGCL achieves state-of-the-art performance in the settings of both graph classification and node classification tasks.

Dynamic Causal Discovery in Imitation Learning

Using deep reinforcement learning (DRL) to recover expert policies via imitation has been found to be promising in a wide range of applications. However, it remains a difficult task to interpret the control policy learned by the agent. Difficulties mainly come from two aspects: 1) agents in DRL are usually implemented as deep neural networks (DNNs), which are black-box models and lack in interpretability, 2) the latent causal mechanism behind agents’ decisions may vary along the trajectory, rather than staying static throughout time steps. To address these difficulties, in this paper, we propose a self-explaining imitation framework, which can expose causal relations among states and action variables behind its decisions. Specifically, a dynamic causal discovery module is designed to extract the causal graph basing on historical trajectory and current states at each time step, and a causality encoding module is designed to model the interactions among variables with discovered causal edges. After encoding causality into variable embeddings, a prediction model conducts the imitation learning on top of obtained representations. These three components are trained end-to-end, and discovered causal edges can provide interpretations on rules captured by the agent. Comprehensive experiments are conducted on the simulation dataset to analyze its causal discovery capacity, and we further test it on a real-world medical dataset MIMIC-IV. Experimental results demonstrate its potential of providing explanations behind decisions.

You Are What and Where You Are: Graph Enhanced Attention Network for Explainable POI Recommendation

Point-of-interest (POI) recommendation is an emerging area of research on location-based social networks to analyze user behaviors and contextual check-in information. For this problem, existing approaches, with shallow or deep architectures, have two major drawbacks. First, for these approaches, the attributes of individuals have been largely ignored. Therefore, it would be hard, if not impossible, to gather sufficient user attribute features to have complete coverage of possible motivation factors. Second, most existing models preserve the information of users or POIs by latent representations without explicitly highlighting salient factors or signals. Consequently, the trained models with unjustifiable parameters provide few persuasive rationales to explain why users favor or dislike certain POIs and what really causes a visit. To overcome these drawbacks, we propose GEAPR, a POI recommender that is able to interpret the POI prediction in an end-to-end fashion. Specifically, GEAPR learns user representations by aggregating different factors, such as structural context, neighbor impact, user attributes, and geolocation influence. GEAPR takes advantage of a triple attention mechanism to quantify the influences of different factors for each resulting recommendation and performs a thorough analysis of the model interpretability. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed model. GEAPR is deployed and under test on an internal web server. An example interface is presented to showcase its application on explainable POI recommendation.

Recommend for a Reason: Unlocking the Power of Unsupervised Aspect-Sentiment Co-Extraction

Compliments and concerns in reviews are valuable for understanding users’ shopping interests and their opinions with respect to specific aspects of certain items. Existing review-based recommenders favor large and complex language encoders that can only learn latent and uninterpretable text representations. They lack explicit user-attention and item-property modeling, which however could provide valuable information beyond the ability to recommend items. Therefore, we propose a tightly coupled two-stage approach, including an Aspect-Sentiment Pair Extractor (ASPE) and an Attention-Property-aware Rating Estimator (APRE). Unsupervised ASPE mines Aspect-Sentiment pairs (AS-pairs) and APRE predicts ratings using AS-pairs as concrete aspect-level evidences. Extensive experiments on seven real-world Amazon Review Datasets demonstrate that ASPE can effectively extract AS-pairs which enable APRE to deliver superior accuracy over the leading baselines.

Interpreting Convolutional Sequence Model by Learning Local Prototypes with Adaptation Regularization

In many high-stakes applications of machine learning models, outputting only predictions or providing statistical confidence is usually insufficient to gain trust from end users, who often prefer a transparent reasoning paradigm. Despite the recent encouraging developments on deep networks for sequential data modeling, due to the highly recursive functions, the underlying rationales of their predictions are difficult to explain. Thus, in this paper, we aim to develop a sequence modeling approach that explains its own predictions by breaking input sequences down into evidencing segments (i.e., sub-sequences) in its reasoning. To this end, we build our model upon convolutional neural networks, which, in their vanilla forms, associates local receptive fields with outputs in an obscure manner. To unveil it, we resort to case-based reasoning, and design prototype modules whose units (i.e., prototypes) resemble exemplar segments in the problem domain. Each prediction is obtained by combining the comparisons between the prototypes and the segments of an input. To enhance interpretability, we propose a training objective that delicately adapts the distribution of prototypes to the data distribution in latent spaces, and design an algorithm to map prototypes to human-understandable segments. Through extensive experiments in a variety of domains, we demonstrate that our model can achieve high interpretability generally, together with a competitive accuracy to the state-of-the-art approaches.

Hierarchical Imitation Learning with Contextual Bandits for Dynamic Treatment Regimes

Imitation learning has been proved to be effective in mimicking experts’ behaviors from their demonstrations without access to explicit reward signals. Meanwhile, complex tasks, e.g., dynamic treatment regimes for patients with comorbidities, often suggest significant variability in expert demonstrations with multiple sub-tasks. In these cases, it could be difficult to use a single flat policy to handle tasks of hierarchical structures. In this paper, we propose the hierarchical imitation learning model, HIL, to jointly learn latent high-level policies and sub-policies (for individual sub-tasks) from expert demonstrations without prior knowledge. First, HIL learns sub-policies by imitating expert trajectories with the sub-task switching guidance from high-level policies. Second, HIL collects the feedback from its sub-policies to optimize high-level policies, which is modeled as a contextual multi-arm bandit that sequentially selects the best sub-policies at each time step based on the contextual information derived from demonstrations. Compared with state-of-the-art baselines on real-world medical data, HIL improves the likelihood of patient survival and provides better dynamic treatment regimes with the exploitation of hierarchical structures in expert demonstrations.

Unsupervised Concept Representation Learning for Length-Varying Text Similarity

Measuring document similarity plays an important role in natural language processing tasks. Most existing document similarity approaches suffer from the information gap caused by context and vocabulary mismatches when comparing varying-length texts. In this paper, we propose an unsupervised concept representation learning approach to address the above issues. Specifically, we propose a novel Concept Generation Network (CGNet) to learn concept representations from the perspective of the entire text corpus. Moreover, a concept-based document matching method is proposed to leverage advances in the recognition of local phrase features and corpus-level concept features. Extensive experiments on real-world data sets demonstrate that new method can achieve a considerable improvement in comparing length-varying texts. In particular, our model achieved 6.5% better F1 Score compared to the best of the baseline models for a concept-project benchmark dataset.