Wenchao Yul NEC Labs America

Wenchao Yu

Senior Researcher

Data Science and System Security

Posts

Position Really Matters: Towards a Holistic Approach for Prompt Tuning

Prompt tuning is highly effective in efficiently extracting knowledge from foundation models, encompassing both language, vision, and vision-language models. However, the efficacy of employing fixed soft prompts with a predetermined position for concatenation with inputs for all instances, irrespective of their inherent disparities, remains uncertain. Variables such as the position, length, and representations of prompts across diverse instances and tasks can substantially influence the performance of prompt tuning. We first provide a theoretical analysis, revealing that optimizing the position of the prompt to encompass the input can capture additional semantic information that traditional prefix or postfix prompt tuning methods fail to capture. Then, we present a holistic parametric prompt tuning strategy that dynamically determines different factors of prompts based on specific tasks or instances. Experimental results underscore the significant performance improvement achieved by dynamic prompt tuning across a wide range of tasks, including NLP, vision recognition, and vision-language tasks. Furthermore, we establish the universal applicability of our approach under full-data, few-shot, and multitask settings.

MixLLM: Dynamic Routing in Mixed Large Language Models

Large Language Models (LLMs) exhibit potential artificial generic intelligence recently, however, their usage is costly with high response latency. Given mixed LLMs with their own strengths and weaknesses, LLM routing aims to identify the most suitable model for each query in the stream to maximize response quality and minimize cost and latency. However, the challenges involve: (1) dynamic trade-offs among quality, cost, and latency; (2) enabling continual learning in deployed systems; and (3) navigating a varying (e.g., new LLM addition or old LLM removal) set of LLM candidates over time. To bridge these gaps, we develop MixLLM, a dynamic contextual-banditbased routing system for query-LLM assignment. Specifically, we first leverage query tags to enhance query embeddings for the routing task. Next, we design lightweight prediction models to estimate the response qualities and costs of queries over LLMs. We then devise a meta-decision maker to choose the query-LLM assignments to best tradeoff response quality, cost, and latency. Finally, the system benefits from continual training, allowing it to adapt to evolving queries and user feedback over time. Our extensive experiments show that MixLLM achieves the best trade-offs in response quality, cost, and latency (97.25% of GPT-4’s quality at 24.18% of the cost under the time constraint). 

SFS: Smarter Code Space Search improves LLM Inference Scaling

We frame code generation as a black-box optimization problem within the code space and demonstrate how optimization-inspired techniques can enhance inference scaling. Based on this perspective, we propose SCATTERED FOREST SEARCH (SFS), a novel approach that improves solution diversity and better exploits feedback during evolutionary search. Our theoretical analysis illustrates how these methods help avoid local optima during optimization, leading to more efficient exploration. Extensive experiments on HumanEval, MBPP, APPS, CodeContests, and Leetcode reveal significant performance gains. For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and 87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3% over the state-of-the-art, while also halving the iterations needed to find the correct solution. Furthermore, our approach scales more efficiently than existing search techniques, including tree search, line search, and repeated sampling.

TSLA: Unified Time Series and Language Model

Real-world time series data often require analysis or interpretation from domain experts. Some tasks, like time series question answering, involve both time series and natural language questions, posing challenges for single-modality language models to understand their interaction. To this end, we present TSLA (Time Series Language Model), a framework designed to enhance the language model with the understanding of time series data for multi-modality tasks. TSLA comprises three key components. (1) Time Series Tokenizer learns how to represent time series data into discrete tokens, making it more manageable for language models. (2) Joint (Pre-)Training on task-agnostic time series and text data integrates time series tokens and text tokens to model the interplay between time series and language concepts. (3) Multi-task Instruction Tuning fine-tunes the pretrained TSLA for various downstream tasks relevant to user interests. For evaluation, we applied TSLA to time series data from human motions on four tasks: time series captioning, time series question answering, text-based time series synthesis, and text-based time series continuation. The results demonstrate TSLA’s effectiveness in handling multiple time series analysis tasks, pointing the way for future research endeavors.

TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents

Time series data is essential in various applications, including climate modeling, healthcare monitoring, and financial analytics. Understanding the contextual information associated with real-world time series data is often essential for accurate and reliable event predictions. In this paper, we introduce TimeCAP, a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data, extending their typical usage as predictors. TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions. In addition, TimeCAP employs a multi-modal encoder that synergizes with the LLM agents, enhancing predictive performance through mutual augmentation of inputs with in-context examples. Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction, including those utilizing LLMs as predictors, achieving an average improvement of 28.75% in F1 score.

NEC Labs America Attends the 39th Annual AAAI Conference on Artificial Intelligence #AAAI25

Our NEC Lab America team attended the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25), in Philadelphia, Pennsylvania at the Pennsylvania Convention Center from February 25 to March 4, 2025. The purpose of the AAAI conference series was to promote research in Artificial Intelligence (AI) and foster scientific exchange between researchers, practitioners, scientists, students, and engineers across the entirety of AI and its affiliated disciplines. Our team presented technical papers, led special tracks, delivered talks on key topics, participated in workshops, conducted tutorials, and showcased research in poster sessions. The team greeted visitors at Booth #208 and was there Thursday through Saturday.

Large Language Models Can Be Contextual Privacy Protection Learners

The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains contextually sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of data leakage of sensitive PII during inference time. To address this challenge, we introduce Contextual Privacy Protection Language Models (CPPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding inference-time data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model s knowledge. Our work underscores the potential for Large Language Models as robust contextual privacy protection learners.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration (EMNLP 2024)

Large Language Models (LLMs) have achieved exceptional capabilities in open generation across various domains, yet they encounter difficulties with tasks that require intensive knowledge. To address these challenges, methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules. These approaches, however, face data inefficiency issues as they necessitate the processing of both known and unknown knowledge for fine-tuning. Thus, our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge. A risk of introducing new knowledge is the potential forgetting of existing knowledge. To mitigate this risk, we propose the innovative InfuserKI framework. This framework employs transformer internal states to determine when to enrich LLM outputs with additional information, effectively preventing knowledge forgetting. Performance evaluations using the UMLS-2.5k and MetaQA domain knowledge graphs reveal that InfuserKI not only successfully integrates new knowledge but also outperforms state-of-the-art baselines, reducing knowledge forgetting by 9% and 6%, respectively.

PAIL: Performance based Adversarial Imitation Learning Engine for Carbon Neutral Optimization

Achieving carbon neutrality within industrial operations has become increasingly imperative for sustainable development. It is both a significant challenge and a key opportunity for operational optimization in industry 4.0. In recent years, Deep Reinforcement Learning (DRL) based methods offer promising enhancements for sequential optimization processes and can be used for reducing car-bon emissions. However, existing DRL methods need a pre-defined reward function to assess the impact of each action on the final sustainable development goals (SDG). In many real applications, such a reward function cannot be given in advance. To address the problem, this study proposes a Performance based Adversarial Imitation Learning (PAIL) engine. It is a novel method to acquire optimal operational policies for carbon neutrality without any pre-defined action rewards. Specifically, PAIL employs a Transformer-based policy generator to encode historical information and predict fol-lowing actions within a multi-dimensional space. The entire action sequence will be iteratively updated by an environmental simulator. Then PAIL uses a discriminator to minimize the discrepancy be-tween generated sequences and real-world samples of high SDG. In parallel, a Q-learning framework based performance estimator is de-signed to estimate the impact of each action on SDG. Based on these estimations, PAIL refines generated policies with the rewards from both discriminator and performance estimator. PAIL is evaluated on multiple real-world application cases and datasets. The experiment results demonstrate the effectiveness of PAIL comparing to other state-of-the-art baselines. In addition, PAIL offers meaningful interpretability for the optimization in carbon neutrality.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration (VLDB 2024)

Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks. To alleviate this issue, knowledge integration methods have been proposed to enhance LLMs with domain-specific knowledge graphs using external modules. However, they suffer from data inefficiency as they require both known and unknown knowledge for fine-tuning. Thus, we study a novel problem of integrating unknown knowledge into LLMs efficiently without unnecessary overlap of known knowledge. Injecting new knowledge poses the risk of forgetting previously acquired knowledge. To tackle this, we propose a novel Infuser-Guided Knowledge Integration (InfuserKI) framework that utilizes transformer internal states to determine whether to enhance the original LLM output with additional information, thereby effectively mitigating knowledge forgetting. Evaluations on the UMLS-2.5k and MetaQA domain knowledge graphs demonstrate that InfuserKI can effectively acquire new knowledge and outperform state-of-the-art baselines by 9% and 6%, respectively, in reducing knowledge forgetting.