Wenchao Yul NEC Labs America

Wenchao Yu

Senior Researcher

Data Science and System Security

Posts

TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents

Time series data is essential in various applications, including climate modeling, healthcare monitoring, and financial analytics. Understanding the contextual information associated with real-world time series data is often essential for accurate and reliable event predictions. In this paper, we introduce TimeCAP, a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data, extending their typical usage as predictors. TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions. In addition, TimeCAP employs a multi-modal encoder that synergizes with the LLM agents, enhancing predictive performance through mutual augmentation of inputs with in-context examples. Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction, including those utilizing LLMs as predictors, achieving an average improvement of 28.75% in F1 score.

NEC Labs America Attends the 39th Annual AAAI Conference on Artificial Intelligence #AAAI25

Our NEC Lab America team attended the Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25), in Philadelphia, Pennsylvania at the Pennsylvania Convention Center from February 25 to March 4, 2025. The purpose of the AAAI conference series was to promote research in Artificial Intelligence (AI) and foster scientific exchange between researchers, practitioners, scientists, students, and engineers across the entirety of AI and its affiliated disciplines. Our team presented technical papers, led special tracks, delivered talks on key topics, participated in workshops, conducted tutorials, and showcased research in poster sessions. The team greeted visitors at Booth #208 and was there Thursday through Saturday.

Large Language Models Can Be Contextual Privacy Protection Learners

The proliferation of Large Language Models (LLMs) has driven considerable interest in fine-tuning them with domain-specific data to create specialized language models. Nevertheless, such domain-specific fine-tuning data often contains contextually sensitive personally identifiable information (PII). Direct fine-tuning LLMs on this data without privacy protection poses a risk of data leakage of sensitive PII during inference time. To address this challenge, we introduce Contextual Privacy Protection Language Models (CPPLM), a novel paradigm for fine-tuning LLMs that effectively injects domain-specific knowledge while safeguarding inference-time data privacy. Our work offers a theoretical analysis for model design and delves into various techniques such as corpus curation, penalty-based unlikelihood in training loss, and instruction-based tuning, etc. Extensive experiments across diverse datasets and scenarios demonstrate the effectiveness of our approaches. In particular, instruction tuning with both positive and negative examples, stands out as a promising method, effectively protecting private data while enhancing the model s knowledge. Our work underscores the potential for Large Language Models as robust contextual privacy protection learners.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration (EMNLP 2024)

Large Language Models (LLMs) have achieved exceptional capabilities in open generation across various domains, yet they encounter difficulties with tasks that require intensive knowledge. To address these challenges, methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules. These approaches, however, face data inefficiency issues as they necessitate the processing of both known and unknown knowledge for fine-tuning. Thus, our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge. A risk of introducing new knowledge is the potential forgetting of existing knowledge. To mitigate this risk, we propose the innovative InfuserKI framework. This framework employs transformer internal states to determine when to enrich LLM outputs with additional information, effectively preventing knowledge forgetting. Performance evaluations using the UMLS-2.5k and MetaQA domain knowledge graphs reveal that InfuserKI not only successfully integrates new knowledge but also outperforms state-of-the-art baselines, reducing knowledge forgetting by 9% and 6%, respectively.

PAIL: Performance based Adversarial Imitation Learning Engine for Carbon Neutral Optimization

Achieving carbon neutrality within industrial operations has become increasingly imperative for sustainable development. It is both a significant challenge and a key opportunity for operational optimization in industry 4.0. In recent years, Deep Reinforcement Learning (DRL) based methods offer promising enhancements for sequential optimization processes and can be used for reducing car-bon emissions. However, existing DRL methods need a pre-defined reward function to assess the impact of each action on the final sustainable development goals (SDG). In many real applications, such a reward function cannot be given in advance. To address the problem, this study proposes a Performance based Adversarial Imitation Learning (PAIL) engine. It is a novel method to acquire optimal operational policies for carbon neutrality without any pre-defined action rewards. Specifically, PAIL employs a Transformer-based policy generator to encode historical information and predict fol-lowing actions within a multi-dimensional space. The entire action sequence will be iteratively updated by an environmental simulator. Then PAIL uses a discriminator to minimize the discrepancy be-tween generated sequences and real-world samples of high SDG. In parallel, a Q-learning framework based performance estimator is de-signed to estimate the impact of each action on SDG. Based on these estimations, PAIL refines generated policies with the rewards from both discriminator and performance estimator. PAIL is evaluated on multiple real-world application cases and datasets. The experiment results demonstrate the effectiveness of PAIL comparing to other state-of-the-art baselines. In addition, PAIL offers meaningful interpretability for the optimization in carbon neutrality.

InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration (VLDB 2024)

Though Large Language Models (LLMs) have shown remarkable open-generation capabilities across diverse domains, they struggle with knowledge-intensive tasks. To alleviate this issue, knowledge integration methods have been proposed to enhance LLMs with domain-specific knowledge graphs using external modules. However, they suffer from data inefficiency as they require both known and unknown knowledge for fine-tuning. Thus, we study a novel problem of integrating unknown knowledge into LLMs efficiently without unnecessary overlap of known knowledge. Injecting new knowledge poses the risk of forgetting previously acquired knowledge. To tackle this, we propose a novel Infuser-Guided Knowledge Integration (InfuserKI) framework that utilizes transformer internal states to determine whether to enhance the original LLM output with additional information, thereby effectively mitigating knowledge forgetting. Evaluations on the UMLS-2.5k and MetaQA domain knowledge graphs demonstrate that InfuserKI can effectively acquire new knowledge and outperform state-of-the-art baselines by 9% and 6%, respectively, in reducing knowledge forgetting.

Dynamic Causal Discovery in Imitation Learning

Imitation learning, which learns agent policy by mimicking expert demonstration, has shown promising results in many applications such as medical treatment regimes and self-driving vehicles. However, it remains a difficult task to interpret control policies learned by the agent. Difficulties mainly come from two aspects: 1) agents in imitation learning are usually implemented as deep neural networks, which are black-box models and lack interpretability; 2) the latent causal mechanism behind agents’ decisions may vary along the trajectory, rather than staying static throughout time steps. To increase transparency and offer better interpretability of the neural agent, we propose to expose its captured knowledge in the form of a directed acyclic causal graph, with nodes being action and state variables and edges denoting the causal relations behind predictions. Furthermore, we design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs. Concretely, we conduct causal discovery from the perspective of Granger causality and propose a self-explainable imitation learning framework, CAIL. The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner. After the model is learned, we can obtain causal relations among states and action variables behind its decisions, exposing policies learned by it. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposed CAIL in learning the dynamic causal graphs for understanding the decision-making of imitation learning meanwhilemaintaining high prediction accuracy.

GLAD: Content-Aware Dynamic Graphs for Log Anomaly Detection

Logs play a crucial role in system monitoring and debugging by recording valuable system information, including events and status. Although various methods have been proposed to detect anomalies in log sequences, they often overlook the significance of considering relationships among system components, such as services and users, which can be identified from log contents. Understanding these relationships is vital for identifying anomalies and their underlying causes. To address this issue, we introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect relational anomalies in system logs. GLAD incorporates log semantics, relationship patterns, and sequential patterns into a unified framework for anomaly detection. Specifically, GLAD first introduces a field extraction module that utilizes prompt-based few-shot learning to extract essential field information, such as services and users, from log contents. Then GLAD constructs dynamic log graphs for sliding windows by leveraging the log events and extracted fields. These graphs represent events and fields as nodes and their relationships as edges. Subsequently, we propose atemporal-attentive graph edge anomaly detection model for identifying anomalous relationships in the dynamic log graphs. This model employs a Graph Neural Network (GNN)-based encoder enhanced with transformers to capture structural, content, and temporal features. We evaluate our proposed method on three datasets, and the results demonstrate the effectiveness of GLAD in detecting anomalies indicated by varying relation patterns.

FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation

Read FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation publication. Imitation learning that replicates experts’ skills via their demonstrations has shown significant success in various decision-making tasks. However, two critical challenges still hinder the deployment of imitation learning techniques in real-world application scenarios. First, existing methods lack the intrinsic interpretability to explicitly explain the underlying rationale of the learned skill and thus making learned policy untrustworthy. Second, due to the scarcity of expert demonstrations from each end user (client), learning a policy based on different data silos is necessary but challenging in privacy-sensitive applications such as finance and healthcare. To this end, we present a privacy-preserved interpretable skill learning framework (FedSkill) that enables global policy learning to incorporate data from different sources and provides explainable interpretations to each local user without violating privacy and data sovereignty. Specifically, our proposed interpretable skill learning model can capture the varying patterns in the trajectories of expert demonstrations, and extract prototypical information as skills that provide implicit guidance for policy learning and explicit explanations in the reasoning process. Moreover, we design a novel aggregation mechanism coupled with the based skill learning model to preserve global information utilization and maintain local interpretability under the federated framework. Thoroughly experiments on three datasets and empirical studies demonstrate that our proposed FedSkill framework not only outperforms state-of-the-art imitation learning methods but also exhibits good interpretability under a federated setting. Our proposed FedSkill framework is the first attempt to bridge the gaps among federated learning, interpretable machine learning, and imitation learning.

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations

Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off between demonstration quality and quantity needs to be made. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, SDIL consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of SDIL in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.