Xiang Yu is a former researcher in the Media Analytics department of NEC Laboratories America, Inc.

Posts

OpEnCam: Optical Encryption Camera

Lensless cameras multiplex the incoming light before it is recorded by the sensor. This ability to multiplex the incoming light has led to the development of ultra-thin, high-speed, and single-shot 3D imagers. Recently, there have been various attempts at demonstrating another useful aspect of lensless cameras – their ability to preserve the privacy of a scene by capturing encrypted measurements. However, existing lensless camera designs suffer numerous inherent privacy vulnerabilities. To demonstrate this, we develop the first comprehensive attack model for encryption cameras, and propose OpEnCam — a novel lensless OPtical ENcryption CAmera design that overcomes these vulnerabilities. OpEnCam encrypts the incoming light before capturing it using the modulating ability of optical masks. Recovery of the original scene from an OpEnCam measurement is possible only if one has access to the camera’s encryption key, defined by the unique optical elements of each camera. Our OpEnCam design introduces two major improvements over existing lensless camera designs – (a) the use of two co-axially located optical masks, one stuck to the sensor and the other a few millimeters above the sensor and (b) the design of mask patterns, which are derived heuristically from signal processing ideas. We show, through experiments, that OpEnCam is robust against a range of attack types while still maintaining the imaging capabilities of existing lensless cameras. We validate the efficacy of OpEnCam using simulated and real data. Finally, we built and tested a prototype in the lab for proof-of-concept.

Domain Generalization Guided by Gradient Signal to Noise Ratio of Parameters

Overfitting to the source domain is a common issue in gradient-based training of deep neural networks. To compensate for the over-parameterized models, numerous regularization techniques have been introduced such as those based on dropout. While these methods achieve significant improvements on classical benchmarks such as ImageNet, their performance diminishes with the introduction of domain shift in the test set i.e. when the unseen data comes from a significantly different distribution. In this paper, we move away from the classical approach of Bernoulli sampled dropout mask construction and propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network’s parameters. Specifically, at each training step, parameters with high GSNR will be discarded. Furthermore, we alleviate the burden of manually searching for the optimal dropout ratio by leveraging a meta-learning approach. We evaluate our method on standard domain generalization benchmarks and achieve competitive results on classification and face anti-spoofing problems.

Q: How to Specialize Large Vision-Language Models to Data-Scarce VQA Tasks? A: Self-Train on Unlabeled Images!

Q: How to Specialize Large Vision-Language Models to Data-Scarce VQA Tasks? A: Self-Train on Unlabeled Images! Finetuning a large vision language model (VLM) on a target dataset after large scale pretraining is a dominant paradigm in visual question answering (VQA). Datasets for specialized tasks such as knowledge-based VQA or VQA in non natural-image domains are orders of magnitude smaller than those for general-purpose VQA. While collecting additional labels for specialized tasks or domains can be challenging, unlabeled images are often available. We introduce SelTDA (Self-Taught Data Augmentation), a strategy for finetuning large VLMs on small-scale VQA datasets. SelTDA uses the VLM and target dataset to build a teacher model that can generate question-answer pseudolabels directly conditioned on an image alone, allowing us to pseudolabel unlabeled images. SelTDA then finetunes the initial VLM on the original dataset augmented with freshly pseudolabeled images. We describe a series of experiments showing that our self-taught data augmentation increases robustness to adversarially searched questions, counterfactual examples, and rephrasings, it improves domain generalization, and results in greater retention of numerical reasoning skills. The proposed strategy requires no additional annotations or architectural modifications, and is compatible with any modern encoder-decoder multimodal transformer. Code available at https://github.com/codezakh/SelTDA

Split to Learn: Gradient Split for Multi-Task Human Image Analysis

Split to Learn: Gradient Split for Multi-Task Human Image Analysis This paper presents an approach to train a unified deep network that simultaneously solves multiple human-related tasks. A multi-task framework is favorable for sharing information across tasks under restricted computational resources. However, tasks not only share information but may also compete for resources and conflict with each other, making the optimization of shared parameters difficult and leading to suboptimal performance. We propose a simple but effective training scheme called GradSplit that alleviates this issue by utilizing asymmetric inter-task relations. Specifically, at each convolution module, it splits features into T groups for T tasks and trains each group only using the gradient back-propagated from the task losses with which it does not have conflicts. During training, we apply GradSplit to a series of convolution modules. As a result, each module is trained to generate a set of task-specific features using the shared features from the previous module. This enables a network to use complementary information across tasks while circumventing gradient conflicts. Experimental results show that GradSplit achieves a better accuracy-efficiency trade-off than existing methods. It minimizes accuracy drop caused by task conflicts while significantly saving compute resources in terms of both FLOPs and memory at inference. We further show that GradSplit achieves higher cross-dataset accuracy compared to single-task and other multi-task networks.

Learning Phase Mask for Privacy-Preserving Passive Depth Estimation

Learning Phase Mask for Privacy-Preserving Passive Depth Estimation With over a billion sold each year, cameras are not only becoming ubiquitous, but are driving progress in a wide range of domains such as mixed reality, robotics, and more. However, severe concerns regarding the privacy implications of camera-based solutions currently limit the range of environments where cameras can be deployed. The key question we address is: Can cameras be enhanced with a scalable solution to preserve users’ privacy without degrading their machine intelligence capabilities? Our solution is a novel end-to-end adversarial learning pipeline in which a phase mask placed at the aperture plane of a camera is jointly optimized with respect to privacy and utility objectives. We conduct an extensive design space analysis to determine operating points with desirable privacy-utility tradeoffs that are also amenable to sensor fabrication and real-world constraints. We demonstrate the first working prototype that enables passive depth estimation while inhibiting face identification.

Single-Stream Multi-level Alignment for Vision-Language Pretraining

Single-Stream Multi-level Alignment for Vision-Language Pretraining Self-supervised vision-language pretraining from pure images and text with a contrastive loss is effective, but ignores fine-grained alignment due to a dual-stream architecture that aligns image and text representations only on a global level. Earlier, supervised, non-contrastive methods were capable of finer-grained alignment, but required dense annotations that were not scalable. We propose a single stream architecture that aligns images and language at multiple levels: global, fine-grained patch-token, and conceptual/semantic, using two novel tasks: symmetric cross-modality reconstruction (XMM) and a pseudo-labeled key word prediction (PSL). In XMM, we mask input tokens from one modality and use cross-modal information to reconstruct the masked token, thus improving fine-grained alignment between the two modalities. In PSL, we use attention to select keywords in a caption, use a momentum encoder to recommend other important keywords that are missing from the caption but represented in the image, and then train the visual encoder to predict the presence of those keywords, helping it learn semantic concepts that are essential for grounding a textual token to an image region. We demonstrate competitive performance and improved data efficiency on image-text retrieval, grounding, visual question answering/reasoning against larger models and models trained on more data. Code and models available at zaidkhan.me/SIMLA.

Controllable Dynamic Multi-Task Architectures

Controllable Dynamic Multi-Task Architectures Multi-task learning commonly encounters competition for resources among tasks, specifically when model capacity is limited. This challenge motivates models which allow control over the relative importance of tasks and total compute cost during inference time. In this work, we propose such a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints. In contrast to the existing dynamic multi-task approaches that adjust only the weights within a fixed architecture, our approach affords the flexibility to dynamically control the total computational cost and match the user-preferred task importance better. We propose a disentangled training of two hyper networks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights. Experiments on three multi-task benchmarks, namely PASCAL-Context, NYU-v2, and CIFAR-100, show the efficacy of our approach. Project page is available at https://www.nec-labs.com/-mas/DYMU.

Learning to Learn across Diverse Data Biases in Deep Face Recognition

Learning to Learn across Diverse Data Biases in Deep Face Recognition Convolutional Neural Networks have achieved remarkable success in face recognition, in part due to the abundant availability of data. However, the data used for training CNNs is often imbalanced. Prior works largely focus on the long-tailed nature of face datasets in data volume per identity or focus on single bias variation. In this paper, we show that many bias variations such as ethnicity, head pose, occlusion and blur can jointly affect the accuracy significantly. We propose a sample level weighting approach termed Multi-variation Cosine Margin (MvCoM), to simultaneously consider the multiple variation factors, which orthogonally enhances the face recognition losses to incorporate the importance of training samples. Further, we leverage a learning to learn approach, guided by a held-out meta learning set and use an additive modeling to predict the MvCoM. Extensive experiments on challenging face recognition benchmarks demonstrate the advantages of our method in jointly handling imbalances due to multiple variations.

On Generalizing Beyond Domains in Cross-Domain Continual Learning

On Generalizing Beyond Domains in Cross-Domain Continual Learning Humans have the ability to accumulate knowledge of new tasks in varying conditions, but deep neural networks of-ten suffer from catastrophic forgetting of previously learned knowledge after learning a new task. Many recent methods focus on preventing catastrophic forgetting under the assumption of train and test data following similar distributions. In this work, we consider a more realistic scenario of continual learning under domain shifts where the model must generalize its inference to an unseen domain. To this end, we encourage learning semantically meaningful features by equipping the classifier with class similarity metrics as learning parameters which are obtained through Mahalanobis similarity computations. Learning of the backbone representation along with these extra parameters is done seamlessly in an end-to-end manner. In addition, we propose an approach based on the exponential moving average of the parameters for better knowledge distillation. We demonstrate that, to a great extent, existing continual learning algorithms fail to handle the forgetting issue under multiple distributions, while our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.

Learning Cross-Modal Contrastive Features for Video Domain Adaptation

Learning Cross-Modal Contrastive Features for Video Domain Adaptation Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been derived from the RGB image space. However, video data is usually associated with multi-modal information, e.g., RGB and optical flow, and thus it remains a challenge to design a better method that considers the cross-modal inputs under the cross-domain adaptation setting. To this end, we propose a unified framework for video domain adaptation, which simultaneously regularizes cross-modal and cross-domain feature representations. Specifically, we treat each modality in a domain as a view and leverage the contrastive learning technique with properly designed sampling strategies. As a result, our objectives regularize feature spaces, which originally lack the connection across modalities or have less alignment across domains. We conduct experiments on domain adaptive action recognition benchmark datasets, i.e., UCF, HMDB, and EPIC-Kitchens, and demonstrate the effectiveness of our components against state-of-the-art algorithms.