Xiang Yu is a former researcher in the Media Analytics department of NEC Laboratories America, Inc.

Posts

Deep Supervision with Intermediate Concepts (IEEE)

Read Deep Supervision with Intermediate Concepts (IEEE). Recent data-driven approaches to scene interpretation predominantly pose inference as an end-to-end black-box mapping, commonly performed by a Convolutional Neural Network (CNN). However, decades of work on perceptual organization in both human and machine vision suggest that there are often intermediate representations that are intrinsic to an inference task, and which provide essential structure to improve generalization. In this work, we explore an approach for injecting prior domain structure into neural network training by supervising hidden layers of a CNN with intermediate concepts that normally are not observed in practice. We formulate a probabilistic framework which formalizes these notions and predicts improved generalization via this deep supervision method. One advantage of this approach is that we are able to train only from synthetic CAD renderings of cluttered scenes, where concept values can be extracted, but apply the results to real images. Our implementation achieves the state-of-the-art performance of 2D/3D keypoint localization and image classification on real image benchmarks including KITTI, PASCALVOC, PASCAL3D+, IKEA, and CIFAR100. We provide additional evidence that our approach outperforms alternative forms of supervision, such as multi-task networks.

Pose-variant 3D Facial Attribute Generation

We address the challenging problem of generating facial attributes using a single image in an unconstrained pose. In contrast to prior works that largely consider generation on 2D near-frontal images, we propose a GAN-based framework to generate attributes directly on a dense 3D representation given by UV texture and position maps, resulting in photorealistic, geometrically-consistent and identity-preserving outputs. Starting from a self-occluded UV texture map obtained by applying an off-the-shelf 3D reconstruction method, we propose two novel components. First, a texture completion generative adversarial network (TC-GAN) completes the partial UV texture map. Second, a 3D attribute generation GAN (3DA-GAN) synthesizes the target attribute while obtaining an appearance consistent with 3D face geometry and preserving identity. Extensive experiments on CelebA, LFW and IJB-A show that our method achieves consistently better attribute generation accuracy than prior methods, a higher degree of qualitative photorealism and preserves face identity information.

Feature Transfer Learning for Face Recognition with Under-Represented Data

Despite the large volume of face recognition datasets, there is a significant portion of subjects, of which the samples are insufficient and thus under-represented. Ignoring such significant portion results in insufficient training data. Training with under-represented data leads to biased classifiers in conventionally-trained deep networks. In this paper, we propose a center-based feature transfer framework to augment the feature space of under-represented subjects from the regular subjects that have sufficiently diverse samples. A Gaussian prior of the variance is assumed across all subjects and the variance from regular ones are transferred to the under-represented ones. This encourages the under-represented distribution to be closer to the regular distribution. Further, an alternating training regimen is proposed to simultaneously achieve less biased classifiers and a more discriminative feature representation. We conduct ablative study to mimic the under-represented datasets by varying the portion of under-represented classes on the MS-Celeb-1M dataset. Advantageous results on LFW, IJB-A and MS-Celeb-1M demonstrate the effectiveness of our feature transfer and training strategy, compared to both general baselines and state-of-the-art methods. Moreover, our feature transfer successfully presents smooth visual interpolation, which conducts disentanglement to preserve identity of a class while augmenting its feature space with non-identity variations such as pose and lighting.

Gotta Adapt ’Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild

Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature level, inspired by insights from semi-supervised learning, we propose a classification-aware domain adversarial neural network that brings target examples into more classifiable regions of source domain. Next, we posit that computer vision insights are more amenable to injection at the pixel level. In particular, we use 3D geometry and image synthesis based on a generalized appearance flow to preserve identity across pose transformations, while using an attribute-conditioned CycleGAN to translate a single source into multiple target images that differ in lower-level properties such as lighting. Besides standard UDA benchmark, we validate on a novel and apt problem of car recognition in unlabeled surveillance images using labeled images from the web, handling explicitly specified, nameable factors of variation through pixel-level and implicit, unspecified factors through feature-level adaptation.

Unsupervised Domain Adaptation for Distance Metric Learning

Unsupervised domain adaptation is a promising avenue to enhance the performance of deep neural networks on a target domain, using labels only from a source domain. However, the two predominant methods, domain discrepancy reduction learning and semi-supervised learning, are not readily applicable when source and target domains do not share a common label space. This paper addresses the above scenario by learning a representation space that retains discriminative power on both the (labeled) source and (unlabeled) target domains while keeping representations for the two domains well-separated. Inspired by a theoretical analysis, we first reformulate the disjoint classification task, where the source and target domains correspond to non-overlapping class labels, to a verification one. To handle both within and cross domain verifications, we propose a Feature Transfer Network (FTN) to separate the target feature space from the original source space while aligned with a transformed source space. Moreover, we present a non-parametric multi-class entropy minimization loss to further boost the discriminative power of FTNs on the target domain. In experiments, we first illustrate how FTN works in a controlled setting of adapting from MNIST-M to MNIST with disjoint digit classes between the two domains and then demonstrate the effectiveness of FTNs through state-of-the-art performances on a cross-ethnicity face recognition problem.

Unsupervised Cross Domain Distance Metric Adaptation with Feature Transfer Network

Unsupervised domain adaptation is an attractive avenue to enhance the performance of deep neural networks in a target domain, using labels only from a source domain. However, two predominant methods along this line, namely, domain divergence reduction learning and semi-supervised learning, are not readily applicable when the source and target domains do not share a common label space. This paper addresses the above scenario by learning a representation space that retains discriminative power on both the (labeled) source and (unlabeled) target domains while keeping the representations for the two domains well-separated. Inspired by a theoretical error bound on the target domain, we first reformulate the disjoint classification, where the source and target domains correspond to non-overlapping class labels, to a verification task. To handle both within-domain and cross-domain verification tasks, we propose a Feature Transfer Network (FTN) that separates the target features from the source features while simultaneously aligning the target features with a transformed source feature space. Moreover, we present a non-parametric variation of multi-class entropy minimization loss to further boost the discriminative power of FTNs on the target domain. In experiments, we demonstrate the effectiveness of FTNs through state-of-the-art performances on a cross-ethnicity face recognition problem.

Feature Transfer Learning for Deep Face Recognition with Long-Tail Data

Real-world face recognition datasets exhibit long-tail characteristics, which results in biased classifiers in conventionally-trained deep neural networks, or insufficient data when long-tail classes are ignored. In this paper, we propose to handle long-tail classes in the training of a face recognition engine by augmenting their feature space under a center-based feature transfer framework. A Gaussian prior is assumed across all the head (regular) classes and the variance from regular classes are transferred to the long-tail class representation. This encourages the long-tail distribution to be closer to the regular distribution, while enriching and balancing the limited training data. Further, an alternating training regimen is proposed to simultaneously achieve less biased decision boundaries and a more discriminative feature representation. We conduct empirical studies that mimic long-tail datasets by limiting the number of samples and the proportion of long-tail classes on the MS-Celeb-1M dataset. We compare our method with baselines not designed to handle long-tail classes and also with state-of-the-art methods on face recognition benchmarks. State-of-the-art results on LFW, IJB-A and MS-Celeb-1M datasets demonstrate the effectiveness of our feature transfer approach and training strategy. Finally, our feature transfer allows smooth visual interpolation, which demonstrates disentanglement to preserve identity of a class while augmenting its feature space with non-identity variations.

Joint Pixel and Feature-level Domain Adaptation in the Wild

Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature level, inspired by insights from semi-supervised learning in a domain adversarial neural network, we propose a novel regularization in the form of domain adversarial entropy minimization. Next, we posit that insights from computer vision are more amenable to injection at the pixel level and specifically address the key challenge of adaptation across different semantic levels. In particular, we use 3D geometry and image synthetization based on a generalized appearance flow to preserve identity across higher-level pose transformations, while using an attribute-conditioned CycleGAN to translate a single source into multiple target images that differ in lower-level properties such as lighting. We validate on a novel problem of car recognition in unlabeled surveillance images using labeled images from the web, handling explicitly specified, nameable factors of variation through pixel-level and implicit, unspecified factors through feature-level adaptation. Extensive experiments achieve state-of-the-art results, demonstrating the effectiveness of complementing feature and pixel-level information via our proposed domain adaptation method.