Yanchi Liu NEC Labs America

Yanchi Liu

Senior Researcher

Data Science and System Security

Posts

Tensorized LSTM with Adaptive Shared Memory for Learning Trends in Multivariate Time Series

The problem of learning and forecasting underlying trends in time series data arises in a variety of applications, such as traffic management, energy optimization, etc. In literature, a trend in time series is characterized by the slope and duration, and its prediction is then to forecast the two values of the subsequent trend given historical data of the time series. For this problem, existing approaches mainly deal with the case in univariate time series. However, in many real-world applications, there are multiple variables at play, and handling all of them at the same time is crucial for an accurate prediction. A natural way is to employ multi-task learning (MTL) techniques in which the trend learning of each time series is treated as a task. The key point of MTL is to learn task relatedness to achieve better parameter sharing, which however is challenging in trend prediction task. First, effectively modeling the complex temporal patterns in different tasks is hard as the temporal and spatial dimensions are entangled. Second, the relatedness among tasks may change over time. In this paper, we propose a neural network, DeepTrends, for multivariate time series trend prediction. The core module of DeepTrends is a tensorized LSTM with adaptive shared memory (TLASM). TLASM employs the tensorized LSTM to model the temporal patterns of long-term trend sequences in an MTL setting. With an adaptive shared memory, TLASM is able to learn the relatedness among tasks adaptively, based upon which it can dynamically vary degrees of parameter sharing among tasks. To further consider short-term patterns, DeepTrends utilizes a multi-task 1dCNN to learn the local time series features, and employs a task-specific sub-network to learn a mixture of long-term and short-term patterns for trend prediction. Extensive experiments on real datasets demonstrate the effectiveness of the proposed model.

Asymmetrically Hierarchical Networks with Attentive Interactions for Interpretable Review-based Recommendation

Recently, recommender systems have been able to emit substantially improved recommendations by leveraging user-provided reviews. Existing methods typically merge all reviews of a given user (item) into a long document, and then process user and item documents in the same manner. In practice, however, these two sets of reviews are notably different: users’ reviews reflect a variety of items that they have bought and are hence very heterogeneous in their topics, while an item’s reviews pertain only to that single item and are thus topically homogeneous. In this work, we develop a novel neural network model that properly accounts for this important difference by means of asymmetric attentive modules. The user module learns to attend to only those signals that are relevant with respect to the target item, whereas the item module learns to extract the most salient contents with regard to properties of the item. Our multi-hierarchical paradigm accounts for the fact that neither are all reviews equally useful, nor are all sentences within each review equally pertinent. Extensive experimental results on a variety of real datasets demonstrate the effectiveness of our method.

Exploiting Graph Regularized Multi-dimensional Hawkes Processes for Modeling Events with Spatio-temporal Characteristics

Multi-dimensional Hawkes processes (MHP) has been widely used for modeling temporal events. However, when MHP was used for modeling events with spatio-temporal characteristics, the spatial information was often ignored despite its importance. In this paper, we introduce a framework to exploit MHP for modeling spatio-temporal events by considering both temporal and spatial information. Specifically, we design a graph regularization method to effectively integrate the prior spatial structure into MHP for learning influence matrix between different locations. Indeed, the prior spatial structure can be first represented as a connection graph. Then, a multi-view method is utilized for the alignment of the prior connection graph and influence matrix while preserving the sparsity and low-rank properties of the kernel matrix. Moreover, we develop an optimization scheme using an alternating direction method of multipliers to solve the resulting optimization problem. Finally, the experimental results show that we are able to learn the interaction patterns between different geographical areas more effectively with prior connection graph introduced for regularization.