Yanchi Liu NEC Labs America

Yanchi Liu

Researcher

Data Science and System Security

Posts

Incremental Causal Graph Learning for Online Root Cause Localization

Incremental Causal Graph Learning for Online Root Cause Localization The task of root cause analysis (RCA) is to identify the root causes of system faults/failures by analyzing system monitoring data. Efficient RCA can greatly accelerate system failure recovery and mitigate system damages or financial losses. However, previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process, a significant amount of time and data to train a robust model, and then being retrained from scratch for a new system fault.In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model. CORAL consists of Trigger Point Detection, Incremental Disentangled Causal Graph Learning, and Network Propagation-based Root Cause Localization. The Trigger Point Detection component aims to detect system state transitions automatically and in near-real-time. To achieve this, we develop an online trigger point detection approach based on multivariate singular spectrum analysis and cumulative sum statistics. To efficiently update the RCA model, we propose an incremental disentangled causal graph learning approach to decouple the state-invariant and state-dependent information. After that, CORAL applies a random walk with restarts to the updated causal graph to accurately identify root causes. The online RCA process terminates when the causal graph and the generated root cause list converge. Extensive experiments on three real-world datasets demonstrate the effectiveness and superiority of the proposed framework.

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations

Skill Disentanglement for Imitation Learning from Suboptimal Demonstrations Imitation learning has achieved great success in many sequential decision-making tasks, in which a neural agent is learned by imitating collected human demonstrations. However, existing algorithms typically require a large number of high-quality demonstrations that are difficult and expensive to collect. Usually, a trade-off needs to be made between demonstration quality and quantity in practice. Targeting this problem, in this work we consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set. Some pioneering works have been proposed, but they suffer from many limitations, e.g., assuming a demonstration to be of the same optimality throughout time steps and failing to provide any interpretation w.r.t knowledge learned from the noisy set. Addressing these problems, we propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills. Concretely, SDIL consists of a high-level controller to discover skills and a skill-conditioned module to capture action-taking policies and is trained following a two-phase pipeline by first discovering skills with all demonstrations and then adapting the controller to only the clean set. A mutual-information-based regularization and a dynamic sub-demonstration optimality estimator are designed to promote disentanglement in the skill space. Extensive experiments are conducted over two gym environments and a real-world healthcare dataset to demonstrate the superiority of SDIL in learning from sub-optimal demonstrations and its improved interpretability by examining learned skills.

Personalized Federated Learning under Mixture Distributions

Personalized Federated Learning under Mixture Distributions The recent trend towards Personalized Federated Learning (PFL) has garnered significant attention as it allows for the training of models that are tailored to each client while maintaining data privacy. However, current PFL techniques primarily focus on modeling the conditional distribution heterogeneity (i.e. concept shift), which can result in suboptimal performance when the distribution of input data across clients diverges (i.e. covariate shift). Additionally, these techniques often lack the ability to adapt to unseen data, further limiting their effectiveness in real-world scenarios. To address these limitations, we propose a novel approach, FedGMM, which utilizes Gaussian mixture models (GMM) to effectively fit the input data distributions across diverse clients. The model parameters are estimated by maximum likelihood estimation utilizing a federated Expectation-Maximization algorithm, which is solved in closed form and does not assume gradient similarity. Furthermore, FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification. Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.

Beyond One Model Fits All: A Survey of Domain Specialization for Large Language Models

Beyond One Model Fits All: A Survey of Domain Specialization for Large Language Models Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a “chatbot”, and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

Time Series Contrastive Learning with Information-Aware Augmentations

Time Series Contrastive Learning with Information-Aware Augmentations Various contrastive learning approaches have been proposed in recent years and achieve significant empirical success. While effective and prevalent, contrastive learning has been less explored for time series data. A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples, such that an encoder can be trained to learn robust and discriminative representations. Unlike image and language domains where “desired” augmented samples can be generated with the rule of thumb guided by prefabricated human priors, the ad-hoc manual selection of time series augmentations is hindered by their diverse and human-unrecognizable temporal structures. How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question. In this work, we address the problem by encouraging both high fidelity and variety based on information theory. A theoretical analysis leads to the criteria for selecting feasible data augmentations. On top of that, we propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning. Experiments on various datasets show highly competitive performance with up to a 12.0% reduction in MSE on forecasting tasks and up to 3.7% relative improvement in accuracy on classification tasks over the leading baselines.

Multi-Faceted Knowledge-Driven Pre-training for Product Representation Learning

Multi-Faceted Knowledge-Driven Pre-training for Product Representation Learning As a key component of e-commerce computing, product representation learning (PRL) provides benefits for a variety of applications, including product matching, search, and categorization. The existing PRL approaches have poor language understanding ability due to their inability to capture contextualized semantics. In addition, the learned representations by existing methods are not easily transferable to new products. Inspired by the recent advance of pre-trained language models (PLMs), we make the attempt to adapt PLMs for PRL to mitigate the above issues. In this article, we develop KINDLE, a Knowledge-drIven pre-trainiNg framework for proDuct representation LEarning, which can preserve the contextual semantics and multi-faceted product knowledge robustly and flexibly. Specifically, we first extend traditional one-stage pre-training to a two-stage pre-training framework and exploit a deliberate knowledge encoder to ensure a smooth knowledge fusion into PLM. In addition, we propose a multi-objective heterogeneous embedding method to represent thousands of knowledge elements. This helps KINDLE calibrate knowledge noise and sparsity automatically by replacing isolated classes as training targets in knowledge acquisition tasks. Furthermore, an input-aware gating network is proposed to select the most relevant knowledge for different downstream tasks. Finally, extensive experiments have demonstrated the advantages of KINDLE over the state-of-the-art baselines across three downstream tasks.

CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences

CAT: Beyond Efficient Transformer for Content-Aware Anomaly Detection in Event Sequences It is critical and important to detect anomalies in event sequences, which becomes widely available in many application domains. Indeed, various efforts have been made to capture abnormal patterns from event sequences through sequential pattern analysis or event representation learning. However, existing approaches usually ignore the semantic information of event content. To this end, in this paper, we propose a self-attentive encoder-decoder transformer framework, Content-Aware Transformer CAT, for anomaly detection in event sequences. In CAT, the encoder learns preamble event sequence representations with content awareness, and the decoder embeds sequences under detection into a latent space, where anomalies are distinguishable. Specifically, the event content is first fed to a content-awareness layer, generating representations of each event. The encoder accepts preamble event representation sequence, generating feature maps. In the decoder, an additional token is added at the beginning of the sequence under detection, denoting the sequence status. A one-class objective together with sequence reconstruction loss is collectively applied to train our framework under the label efficiency scheme. Furthermore, CAT is optimized under a scalable and efficient setting. Finally, extensive experiments on three real-world datasets demonstrate the superiority of CAT.

Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph

Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph We target the task of cross-lingual Machine Reading Comprehension (MRC) in the direct zero-shot setting, by incorporating syntactic features from Universal Dependencies (UD), and the key features we use are the syntactic relations within each sentence. While previous work has demonstrated effective syntax-guided MRC models, we propose to adopt the inter-sentence syntactic relations, in addition to the rudimentary intra-sentence relations, to further utilize the syntactic dependencies in the multi-sentence input of the MRC task. In our approach, we build the Inter-Sentence Dependency Graph (ISDG) connecting dependency trees to form global syntactic relations across sentences. We then propose the ISDG encoder that encodes the global dependency graph, addressing the inter-sentence relations via both one-hop and multi-hop dependency paths explicitly. Experiments on three multilingual MRC datasets (XQuAD, MLQA, TyDiQA-GoldP) show that our encoder that is only trained on English is able to improve the zero-shot performance on all 14 test sets covering 8 languages, with up to 3.8 F1 / 5.2 EM improvement on-average, and 5.2 F1 / 11.2 EM on certain languages. Further analysis shows the improvement can be attributed to the attention on the cross-linguistically consistent syntactic path. Our code is available at https://github.com/lxucs/multilingual-mrc-isdg.

Interpreting Convolutional Sequence Model by Learning Local Prototypes with Adaptation Regularization

Interpreting Convolutional Sequence Model by Learning Local Prototypes with Adaptation Regularization n many high-stakes applications of machine learning models, outputting only predictions or providing statistical confidence is usually insufficient to gain trust from end users, who often prefer a transparent reasoning paradigm. Despite the recent encouraging developments on deep networks for sequential data modeling, due to the highly recursive functions, the underlying rationales of their predictions are difficult to explain. Thus, in this paper, we aim to develop a sequence modeling approach that explains its own predictions by breaking input sequences down into evidencing segments (i.e., sub-sequences) in its reasoning. To this end, we build our model upon convolutional neural networks, which, in their vanilla forms, associates local receptive fields with outputs in an obscure manner. To unveil it, we resort to case-based reasoning, and design prototype modules whose units (i.e., prototypes) resemble exemplar segments in the problem domain. Each prediction is obtained by combining the comparisons between the prototypes and the segments of an input. To enhance interpretability, we propose a training objective that delicately adapts the distribution of prototypes to the data distribution in latent spaces, and design an algorithm to map prototypes to human-understandable segments. Through extensive experiments in a variety of domains, we demonstrate that our model can achieve high interpretability generally, together with a competitive accuracy to the state-of-the-art approaches.

Domain oriented Language Modeling with Adaptive Hybrid Masking and Optimal Transport Alignment

Domain oriented Language Modeling with Adaptive Hybrid Masking and Optimal Transport Alignment Motivated by the success of pre-trained language models such as BERT in a broad range of natural language processing (NLP) tasks, recent research efforts have been made for adapting these models for different application domains. Along this line, existing domain-oriented models have primarily followed the vanilla BERT architecture and have a straightforward use of the domain corpus. However, domain-oriented tasks usually require accurate understanding of domain phrases, and such fine-grained phrase-level knowledge is hard to be captured by existing pre-training scheme. Also, the word co-occurrences guided semantic learning of pre-training models can be largely augmented by entity-level association knowledge. But meanwhile, there is a risk of introducing noise due to the lack of ground truth word-level alignment. To address the issues, we provide a generalized domain-oriented approach, which leverages auxiliary domain knowledge to improve the existing pre-training framework from two aspects. First, to preserve phrase knowledge effectively, we build a domain phrase pool as auxiliary knowledge, meanwhile we introduce Adaptive Hybrid Masked Model to incorporate such knowledge. It integrates two learning modes, word learning and phrase learning, and allows them to switch between each other. Second, we introduce Cross Entity Alignment to leverage entity association as weak supervision to augment the semantic learning of pre-trained models. To alleviate the potential noise in this process, we introduce an interpretable Optimal Transport based approach to guide alignment learning. Experiments on four domain-oriented tasks demonstrate the superiority of our framework.