Yi-Hsuan Tsai is a former researcher at NEC Laboratories America, Inc.

Posts

Object Detection with a Unified Label Space from Multiple Datasets

Given multiple datasets with different label spaces, the goal of this work is to train a single object detector predicting over the union of all the label spaces. The practical benefits of such an object detector are obvious and significant—application-relevant categories can be picked and merged form arbitrary existing datasets. However, naive merging of datasets is not possible in this case, due to inconsistent object annotations. Consider an object category like faces that is annotated in one dataset, but is not annotated in another dataset, although the object itself appears in the later’s images. Some categories, like face here, would thus be considered foreground in one dataset, but background in another. To address this challenge, we design a framework which works with such partial annotations, and we exploit a pseudo labeling approach that we adapt for our specific case. We propose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations and define a new challenging experimental setup for this task based on existing public datasets. We show improved performances compared to competitive baselines and appropriate adaptations of existing work

Active Adversarial Domain Adaptation

We propose an active learning approach for transferring representations across domains. Our approach, active adversarial domain adaptation (AADA), explores a duality between two related problems: adversarial domain alignment and importance sampling for adapting models across domains. The former uses a domain discriminative model to align domains, while the latter utilizes the model to weigh samples to account for distribution shifts. Specifically, our importance weight promotes unlabeled samples with large uncertainty in classification and diversity compared to la-beled examples, thus serving as a sample selection scheme for active learning. We show that these two views can be unified in one framework for domain adaptation and transfer learning when the source domain has many labeled examples while the target domain does not. AADA provides significant improvements over fine-tuning based approaches and other sampling methods when the two domains are closely related. Results on challenging domain adaptation tasks such as object detection demonstrate that the advantage over baseline approaches is retained even after hundreds of examples being actively annotated.

Adversarial Learning of Privacy-Preserving and Task-Oriented Representations

Data privacy has emerged as an important issue as data-driven deep learning has been an essential component of modern machine learning systems. For instance, there could be a potential privacy risk of machine learning systems via the model inversion attack, whose goal is to reconstruct the input data from the latent representation of deep networks. Our work aims at learning a privacy-preserving and task-oriented representation to defend against such model inversion attacks. Specifically, we propose an adversarial reconstruction learning framework that prevents the latent representations decoded into original input data. By simulating the expected behavior of adversary, our framework is realized by minimizing the negative pixel reconstruction loss or the negative feature reconstruction (i.e., perceptual distance) loss. We validate the proposed method on face attribute prediction, showing that our method allows protecting visual privacy with a small decrease in utility performance. In addition, we show the utility-privacy trade-off with different choices of hyperparameter for negative perceptual distance loss at training, allowing service providers to determine the right level of privacy-protection with a certain utility performance. Moreover, we provide an extensive study with different selections of features, tasks, and the data to further analyze their influence on privacy protection.

Domain Adaptation for Structured Output via Discriminative Patch Representations

Predicting structured outputs such as semantic segmentation relies on expensive per-pixel annotations to learn supervised models like convolutional neural networks. However, models trained on one data domain may not generalize well to other domains without annotations for model finetuning. To avoid the labor-intensive process of annotation, we develop a domain adaptation method to adapt the source data to the unlabeled target domain. We propose to learn discriminative feature representations of patches in the source domain by discovering multiple modes of patch-wise output distribution through the construction of a clustered space. With such representations as guidance, we use an adversarial learning scheme to push the feature representations of target patches in the clustered space closer to the distributions of source patches. In addition, we show that our framework is complementary to existing domain adaptation techniques and achieves consistent improvements on semantic segmentation. Extensive ablations and results are demonstrated on numerous benchmark datasets with various settings, such as synthetic-to-real and cross-city scenarios.

Unseen Object Segmentation in Videos via Transferable Representations

In order to learn object segmentation models in videos, conventional methods require a large amount of pixel-wise ground truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit existing annotations in source images and transfer such visual information to segment videos with unseen object categories. Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature representations that better adapt to the target frames. The entire process is decomposed into two tasks: (1) solving a submodular function for selecting object-like segments, and (2) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We present an iterative update scheme between two tasks to self-learn the final solution for object segmentation. Experimental results on numerous benchmark datasets show that the proposed method performs favorably against the state-of-the-art algorithms.

Fast and Accurate Online Video Object Segmentation via Tracking Parts

Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object mask in the first frame, which is time-consuming for online applications. In this paper, we propose a fast and accurate video object segmentation algorithm that can immediately start the segmentation process once receiving the images. We first utilize a part-based tracking method to deal with challenging factors such as large deformation, occlusion, and cluttered background. Based on the tracked bounding boxes of parts, we construct a region-of-interest segmentation network to generate part masks. Finally, a similarity-based scoring function is adopted to refine these object parts by comparing them to the visual information in the first frame. Our method performs favorably against state-of-the-art algorithms in accuracy on the DAVIS benchmark dataset, while achieving much faster runtime performance.

Learning to Adapt Structured Output Space for Semantic Segmentation

Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. To further improve our method, we utilize multi-level output adaptation based on feature maps at different levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and visual quality.