Yue Tian NEC Labs America

Yue Tian

Senior Researcher

Optical Networking & Sensing


NEC Labs America at OFC 2024 San Diego from March 24 – 28

The NEC Labs America team Yaowen Li, Andrea D’Amico, Yue-Kai Huang, Philip Ji, Giacomo Borraccini, Ming-Fang Huang, Ezra Ip, Ting Wang & Yue Tian (Not pictured: Fatih Yaman) has arrived in San Diego, CA for OFC24! Our team will be speaking and presenting throughout the event. Read more for an overview of our participation.

Distributed Fiber Optic Sensing for Fault Localization Caused by Fallen Tree Using Physics-informed ResNet

Falling trees or their limbs can cause power lines to break or sag, sometimes resulting in devastating wildfires. Conventional protections such as circuit breakers, overcurrent relays and automatic circuit reclosers may clear short circuits caused by tree contact, but they may not detect cases where the conductors remain intact or a conducting path is not sufficient to create a full short circuit. In this paper, we introduce a novel, non-intrusive monitoring technique that detects and locates fallen trees, even if a short circuit is not triggered. This method employs distributed fiber optic sensing (DFOS) to detect vibrations along the power distribution line where corresponding fiber cables are installed. A physics-informed ResNet model is then utilized to interpret this information and accurately locate fallen trees, which sets it apart from traditional black-box predictions of machine learning algorithms. Our real-scale lab tests demonstrate highly accurate and reliable fallen tree detection and localization.

Unearthing Nature’s Orchestra – How Fiber Optic Cables Can Hear Cicada Secrets

Our Sarper Ozharar, Yue Tian and Yangmin Ding and Jessica L. Ware from the American Museum of Natural History have discovered that fiber optic cables equipped with distributed acoustic sensing (DAS) can pick up the sounds of Brood X cicadas. DAS technology, typically used to monitor seismic activity, can detect the vibrations caused by the loud sounds of cicadas, which live underground for years until they come up to mate.

Long Term Monitoring and Analysis of Brood X Cicada Activity by Distributed Fiber Optic Sensing Technology

Brood X is the largest of the 15 broods of periodical cicadas, and individuals from this brood emerged across the Eastern United States in spring 2021. Using distributed acoustic sensing (DAS) technology, the activity of Brood X cicadas was monitored in their natural environment in Princeton, NJ. Critical information regarding their acoustic signatures and activity level is collected and analyzed using standard outdoor-grade telecommunication fiber cables. We believe these results have the potential to be a quantitative baseline for regional Brood X activity and pave the way for more detailed monitoring of insect populations to combat global insect decline. We also show that it is possible to transform readily available fiber optic networks into environmental sensors with no additional installation costs. To our knowledge, this is the first reported use case of a distributed fiber optic sensing system for entomological sciences and environmental studies.

Beyond Communication: Telecom Fiber Networks for Rain Detection and Classification

We present the field trial of an innovative neural network and DAS-based technique, employing a pre-trained CNN fine-tuning strategy for effective rain detection and classification within two practical scenarios.

Utility Pole Localization by Learning From Ambient Traces on Distributed Acoustic Sensing

Utility pole detection and localization is the most fundamental application in aerial-optic cables using distributed acoustic sensing (DAS). The existing pole localization method recognizes the hammer knock signal on DAS traces by learning from knocking vibration patterns. However, it requires many efforts for data collection such as knocking every pole and manually labeling the poles’ locations, making this labor-intensive solution expensive, inefficient, and highly error prone. In this paper, we propose a pole localization solution by learning the ambient data collected from a DAS system, which are vibration patterns excited by random ambient events, such as wind and nearby traffic. In detail, we investigate a universal framework for learning representations of ambient data in the frequency domain by contrastive learning of the similarity of low and high-frequency series. A Gaussian-based data reweighting kernel is employed for eliminating the effect of the label noise. Experimental results demonstrate the proposed methods outperform the existing contrastive learning methods on the real-world DAS ambient dataset.

Distributed fiber optic sensing over readily available telecom fiber networks

Distributed Fiber Optic Sensing (DFOS) systems rely on measuring and analyzing different properties of the backscattered light of an optical pulse propagating along a fiber cable. DFOS systems can measure temperature, strain, vibrations, or acoustic excitations on the fiber cable and to their unique specifications, they have many applications and advantages over competing technologies. In this talk we will focus on the challenges and applications of DFOS systems using outdoor grade telecom fiber networks instead of standard indoor or some specialty fiber cables.

Rain Intensity Detection and Classification with Pre-existing Telecom Fiber Cables

For the first time, we demonstrate detection and classification of rain intensity using Distributed Acoustic Sensing (DAS). An artificial neural network was applied for rain intensity classification and high precision of over 96% was achieved.

Detection and Localization of Stationary Weights Hanging on Aerial Telecommunication Fibers using Distributed Acoustic Sensing

For the first time to our knowledge, a stationary weight hanging on an operational aerial telecommunication field fiber was detected and localized using only ambient data collected by a φ-DAS system. Although stationary weights do not create temporally varying signals, and hence cannot be observed directly from the DAS traces, the existence and the location of the additional weights were revealed by the operational modal analysis of the aerial fiber structure.

A Silicon Photonic-Electronic Neural Network for Fiber Nonlinearity Compensation

In optical communication systems, fibre nonlinearity is the major obstacle in increasing the transmission capacity. Typically, digital signal processing techniques and hardware are used to deal with optical communication signals, but increasing speed and computational complexity create challenges for such approaches. Highly parallel, ultrafast neural networks using photonic devices have the potential to ease the requirements placed on digital signal processing circuits by processing the optical signals in the analogue domain. Here we report a silicon photonic–electronic neural network for solving fibre nonlinearity compensation in submarine optical-fibre transmission systems. Our approach uses a photonic neural network based on wavelength-division multiplexing built on a silicon photonic platform compatible with complementary metal–oxide–semiconductor technology. We show that the platform can be used to compensate for optical fibre nonlinearities and improve the quality factor of the signal in a 10,080 km submarine fibre communication system. The Q-factor improvement is comparable to that of a software-based neural network implemented on a workstation assisted with a 32-bit graphic processing unit.