Zhengzhang Chen NEC Labs America

Zhengzhang Chen

Senior Researcher

Data Science and System Security

Posts

ICeTEA: Mixture of Detectors for Metric-Log Anomaly Detection

Anomaly detection is essential for identifying unusual system behaviors and has wide-ranging applications, from fraud detection to system monitoring. In web servers, anomalies are typically detected using two types of data: metrics (numerical indicators of performance) and logs (records of system events). While correlations between metrics and logs in real-world scenarios highlight the need for joint analysis, which is termed the “metric-log anomaly detection” problem, it has not been fully explored yet due to inherent differences between metrics and logs. In this paper, we propose ICeTEA, a novel system for metric-log anomaly detection that integrates three detectors: a metric-log detector based on a multimodal Variational Autoencoder (VAE), and two individual metric and log detectors. By leveraging the ensemble technique to combine outputs of these detectors, ICeTEA enhances the effectiveness and robustness of metric-log anomaly detection. Case studies demonstrate two key functionalities of ICeTEA: data visualization and rankings of contributions to anomaly scores. Experiments demonstrate that our proposed ICeTEA accurately detects true anomalies while significantly reducing false positives.

Exploring Multi-Modal Data with Tool-Augmented LLM Agents for Precise Causal Discovery

Causal discovery is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multimodal data. To bridge the gap, we introduce MATMCD, a multi-agent system powered by tool-augmented LLMs. MATMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven reasoning. The proposed design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery

Beyond the Permutation Symmetry of Transformers: The Role of Rotation for Model Fusion

Symmetry in the parameter space of deep neural networks (DNNs) has proven beneficial for various deep learning applications. A well-known example is the permutation symmetry in Multi-Layer Perceptrons (MLPs), where permuting the rows of weight matrices in one layer and applying the inverse permutation to adjacent layers yields a functionally equivalent model. While permutation symmetry fully characterizes the equivalence set for MLPs, its discrete nature limits its utility for transformers. In this paper, we introduce rotation symmetry, a novel form of parameter space symmetry for transformers that generalizes permutation symmetry by rotating parameter matrices in self-attention layers. Unlike permutation symmetry, rotation symmetry operates in a continuous domain, thereby significantly expanding the equivalence set for transformers. Based on this property, we propose a theoretically optimal parameter matching algorithm as a plug-and-play module to enhance model fusion. We evaluate our approach using pre-trained transformers across diverse natural language and vision tasks. Experimental results demonstrate that our rotation symmetry based matching algorithm substantially improves model fusion, highlighting the potential of parameter space symmetry to facilitate model fusion. Our code is available on https://github.com/zhengzaiyi/RotationSymmetry.

Evidence-Based Out-of-Distribution Detection on Multi-Label Graphs

The Out-of-Distribution (OOD) problem in graph-structured data is becoming increasingly important in various areas of research and applications, including social network recommendation [36], protein function detection [9, 21], etc. Furthermore, owing to the inherent multi-label properties of nodes, multi-label OOD detection remains more challenging than in multi-class scenarios. A lack of uncertainty modeling in multi-label classification methods prevents the separation of OOD nodes from in-distribution (ID) nodes. Existing uncertainty-based OOD detection methods on graphs are not applicable for multi-label scenarios because they are designed for multi-class settings. Therefore, node-level OOD detection on multi-label graphs becomes desirable but rarely touched. In this paper, we pro-pose a novel Evidence-Based Out-of-Distribution Detection method on multi-label graphs. The evidence for multiple labels, which indicates the amount of support to suggest that a sample should be classified into a specific class, is predicted by Multi-Label Evidential Graph Neural Networks (ML-EGNNs). The joint belief is designed for multi-label opinions fusion by a comultiplication operator. Additionally, we intro-duce a Kernel-based Node Positive Evidence Estimation (KNPE) method to reduce errors in quantifying positive evidence. Experimental results prove both the effectiveness and efficiency of our model for multi-label OOD detection on 7 multi-label benchmarks.

MixLLM: Dynamic Routing in Mixed Large Language Models

Large Language Models (LLMs) exhibit potential artificial generic intelligence recently, however, their usage is costly with high response latency. Given mixed LLMs with their own strengths and weaknesses, LLM routing aims to identify the most suitable model for each query in the stream to maximize response quality and minimize cost and latency. However, the challenges involve: (1) dynamic trade-offs among quality, cost, and latency; (2) enabling continual learning in deployed systems; and (3) navigating a varying (e.g., new LLM addition or old LLM removal) set of LLM candidates over time. To bridge these gaps, we develop MixLLM, a dynamic contextual-banditbased routing system for query-LLM assignment. Specifically, we first leverage query tags to enhance query embeddings for the routing task. Next, we design lightweight prediction models to estimate the response qualities and costs of queries over LLMs. We then devise a meta-decision maker to choose the query-LLM assignments to best tradeoff response quality, cost, and latency. Finally, the system benefits from continual training, allowing it to adapt to evolving queries and user feedback over time. Our extensive experiments show that MixLLM achieves the best trade-offs in response quality, cost, and latency (97.25% of GPT-4’s quality at 24.18% of the cost under the time constraint). 

Graph Neural Networks, Explained: Our Role in the Future of AI

NEC Laboratories America (NECLA) is advancing the frontier of Graph Neural Networks (GNNs), a transformative AI technology that processes complex, interconnected data. Through innovations like PTDNet for robust learning, novel frameworks for explainability, StrGNN for anomaly detection in dynamic graphs, and GERDQ for calibration with out-of-distribution nodes, NECLA is addressing critical challenges in GNN development. These breakthroughs have real-world implications in fields such as cybersecurity, bioinformatics, and recommendation systems, positioning NECLA as a leader in the evolution of graph-based AI.

POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.

RIO-CPD: A Riemannian Geometric Method for Correlation-aware Online Change Point Detection

The objective of change point detection is to identify abrupt changes at potentially multiple points within a data sequence. This task is particularly challenging in the online setting where various types of changes can occur, including shifts in both the marginal and joint distributions of the data. This paper tackles these challenges by sequentially tracking correlation matrices on their Riemannian geometry, where the geodesic distances accurately capture the development of correlations. We propose Rio-CPD, a non-parametric correlation-aware online change point detection framework that combines the Riemannian geometry of the manifold of symmetric positive definite matrices and the cumulative sum statistic (CUSUM) for detecting change points. Rio-CPD enhances CUSUM by computing the geodesic distance from present observations to the Frechet mean of previous observations. With careful choice of metrics equipped to the Riemannian geometry, Rio-CPD is simple and computationally efficient. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods in detection accuracy and efficiency.

Advancing Sustainability in Global Supply Chains through Agent-based Simulation

In today’s world, with its complex global supply chains, the difficulties and uncertainties we face offer both challenges and opportunities for making things better, especially in terms of efficiency and sustainability. These challenges grow due to unpredictable events, such as natural disasters, unexpected incidents, and unusual business practices, pushing us towards more advanced modeling methods that focus on reducing risks and enhancing sustainability. In this paper, we present a new agent-based simulation approach that goes beyond the usual limits of supply chain simulations by incorporating sustainability directly into supply chain operations using reinforcement learning (RL) algorithms. We introduce MOGI, a sustainable supply chain simulation system that takes carbon emissions into account in its main operations. Additionally, we examine how effective a multi-agent RL strategy is in dealing with the complex and uncertain nature of supply chains that span multiple levels. By comparing this strategy with traditional heuristic methods, our study looks at how well single versus multiple RL agents can manage risks and improve sustainability in both the beginning and end parts of the supply chain. The results of our experiments show that strategies based on RL are much better than traditional methods at managing risks, making profits, and achieving sustainability goals.

MULAN: Multi-modal Causal Structure Learning and Root Cause Analysis for Microservice Systems

Effective root cause analysis (RCA) is vital for swiftly restoring services, minimizing losses, and ensuring the smooth operation and management of complex systems. Previous data-driven RCA methods, particularly those employing causal discovery techniques, have primarily focused on constructing dependency or causal graphs for backtracking the root causes. However, these methods often fall short as they rely solely on data from a single modality, thereby resulting in suboptimal solutions. In this work, we propose Mulan, a unified multi-modal causal structure learning method designed to identify root causes in microservice systems. We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data. To explore intricate relationships across different modalities, we propose a contrastive learning-based approach to extract modality-invariant and modality-specific representations within a shared latent space. Additionally, we introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph. Finally, we employ random walk with restart to simulate system fault propagation and identify potential root causes. Extensive experiments on three real-world datasets validate the effectiveness of our proposed method.