Zhengzhang Chen NEC Labs America

Zhengzhang Chen

Senior Researcher

Data Science and System Security

Posts

POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.

RIO-CPD: A Riemannian Geometric Method for Correlation-aware Online Change Point Detection

The objective of change point detection is to identify abrupt changes at potentially multiple points within a data sequence. This task is particularly challenging in the online setting where various types of changes can occur, including shifts in both the marginal and joint distributions of the data. This paper tackles these challenges by sequentially tracking correlation matrices on their Riemannian geometry, where the geodesic distances accurately capture the development of correlations. We propose Rio-CPD, a non-parametric correlation-aware online change point detection framework that combines the Riemannian geometry of the manifold of symmetric positive definite matrices and the cumulative sum statistic (CUSUM) for detecting change points. Rio-CPD enhances CUSUM by computing the geodesic distance from present observations to the Frechet mean of previous observations. With careful choice of metrics equipped to the Riemannian geometry, Rio-CPD is simple and computationally efficient. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods in detection accuracy and efficiency.

Advancing Sustainability in Global Supply Chains through Agent-based Simulation

In today’s world, with its complex global supply chains, the difficulties and uncertainties we face offer both challenges and opportunities for making things better, especially in terms of efficiency and sustainability. These challenges grow due to unpredictable events, such as natural disasters, unexpected incidents, and unusual business practices, pushing us towards more advanced modeling methods that focus on reducing risks and enhancing sustainability. In this paper, we present a new agent-based simulation approach that goes beyond the usual limits of supply chain simulations by incorporating sustainability directly into supply chain operations using reinforcement learning (RL) algorithms. We introduce MOGI, a sustainable supply chain simulation system that takes carbon emissions into account in its main operations. Additionally, we examine how effective a multi-agent RL strategy is in dealing with the complex and uncertain nature of supply chains that span multiple levels. By comparing this strategy with traditional heuristic methods, our study looks at how well single versus multiple RL agents can manage risks and improve sustainability in both the beginning and end parts of the supply chain. The results of our experiments show that strategies based on RL are much better than traditional methods at managing risks, making profits, and achieving sustainability goals.

MULAN: Multi-modal Causal Structure Learning and Root Cause Analysis for Microservice Systems

Effective root cause analysis (RCA) is vital for swiftly restoring services, minimizing losses, and ensuring the smooth operation and management of complex systems. Previous data-driven RCA methods, particularly those employing causal discovery techniques, have primarily focused on constructing dependency or causal graphs for backtracking the root causes. However, these methods often fall short as they rely solely on data from a single modality, thereby resulting in suboptimal solutions. In this work, we propose Mulan, a unified multi-modal causal structure learning method designed to identify root causes in microservice systems. We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data. To explore intricate relationships across different modalities, we propose a contrastive learning-based approach to extract modality-invariant and modality-specific representations within a shared latent space. Additionally, we introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph. Finally, we employ random walk with restart to simulate system fault propagation and identify potential root causes. Extensive experiments on three real-world datasets validate the effectiveness of our proposed method.

Improving Open Information Extraction with Large Language Models: A Study on Demonstration Uncertainty

Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text, typically in the form of (subject, relation, object) triples. Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks due to two key issues. First, LLMs struggle to distinguish irrelevant context from relevant relations and generate structured output due to the restrictions on fine-tuning the model. Second, LLMs generate responses autoregressively based on probability, which makes the predicted relations lack confidence. In this paper, we assess the capabilities of LLMs in improving the OIE task. Particularly, we propose various in-context learning strategies to enhance LLM’s instruction-following ability and a demonstration uncertainty quantification module to enhance the confidence of the generated relations. Our experiments on three OIE benchmark datasets show that our approach holds its own against established supervised methods, both quantitatively and qualitatively.

Prompt-based Domain Discrimination for Multi-source Time Series Domain Adaptation

Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, their primary focus has been on the common representations of time series data. This concentration might inadvertently lead to the oversight of valuable domain-specific information originating from different source domains. To bridge this gap, we introduce POND, a novel prompt-based deep learning model designed explicitly for multi-source time series domain adaptation. POND is tailored to address significant challenges, notably: 1) The unavailability of a quantitative relationship between meta-data information and time series distributions, and 2) The dearth of exploration into extracting domain specific meta-data information. In this paper, we present an instance-level prompt generator and afidelity loss mechanism to facilitate the faithful learning of meta-data information. Additionally, we propose a domain discrimination technique to discern domain-specific meta-data information from multiple source domains. Our approach involves a simple yet effective meta-learning algorithm to optimize the objective efficiently. Furthermore, we augment the model’s performance by incorporating the Mixture of Expert (MoE) technique. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing five datasets, which demonstrates that our proposed POND model outperforms the state-of the-art methods by up to 66% on the F1-score.

NEC Labs America Team Heading to NeurIPS23 in New Orleans

NEC Labs America is proud to be a Silver Sponsor for NeurIPS 2023 in New Orleans from December 10-16. Visit our booth to meet our team and learn about our intern opportunities in machine learning, data science, media analytics and integrated systems. Also, our Vijay Kumar.B.G, Samuel Schulter & Manmohan Chandraker, along with Zaid Khan, Northeastern University and Yun Fu, UC San Diego will present a paper, Exploring Question Decomposition for Zero-Shot VQA.

GLAD: Content-Aware Dynamic Graphs for Log Anomaly Detection

Logs play a crucial role in system monitoring and debugging by recording valuable system information, including events and status. Although various methods have been proposed to detect anomalies in log sequences, they often overlook the significance of considering relationships among system components, such as services and users, which can be identified from log contents. Understanding these relationships is vital for identifying anomalies and their underlying causes. To address this issue, we introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect relational anomalies in system logs. GLAD incorporates log semantics, relationship patterns, and sequential patterns into a unified framework for anomaly detection. Specifically, GLAD first introduces a field extraction module that utilizes prompt-based few-shot learning to extract essential field information, such as services and users, from log contents. Then GLAD constructs dynamic log graphs for sliding windows by leveraging the log events and extracted fields. These graphs represent events and fields as nodes and their relationships as edges. Subsequently, we propose atemporal-attentive graph edge anomaly detection model for identifying anomalous relationships in the dynamic log graphs. This model employs a Graph Neural Network (GNN)-based encoder enhanced with transformers to capture structural, content, and temporal features. We evaluate our proposed method on three datasets, and the results demonstrate the effectiveness of GLAD in detecting anomalies indicated by varying relation patterns.

Interdependent Causal Networks for Root Cause Localization

The goal of root cause analysis is to identify the underlying causes of system problems by discovering and analyzing the causal structure from system monitoring data. It is indispensable for maintaining the stability and robustness of large-scale complex systems. Existing methods mainly focus on the construction of a single effective isolated causal network, whereas many real-world systems are complex and exhibit interdependent structures (i.e., multiple networks of a system are interconnected by cross-network links). In interdependent networks, the malfunctioning effects of problematic system entities can propagate to other networks or different levels of system entities. Consequently, ignoring the interdependency results in suboptimal root cause analysis outcomes.In this paper, we propose REASON, a novel framework that enables the automatic discovery of both intra-level (i.e., within-network) and inter-level (i.e., across-network) causal relationships for root cause localization. REASON consists of Topological Causal Discovery (TCD) and Individual Causal Discovery (ICD). The TCD component aims to model the fault propagation in order to trace back to the root causes. To achieve this, we propose novel hierarchical graph neural networks to construct interdependent causal networks by modeling both intra-level and inter-level non-linear causal relations. Based on the learned interdependent causal networks, we then leverage random walk with restarts to model the network propagation of a system fault. The ICD component focuses on capturing abrupt change patterns of a single system entity. This component examines the temporal patterns of each entity’s metric data (i.e., time series), and estimates its likelihood of being a root cause based on the Extreme Value theory. Combining the topological and individual causal scores, the top K system entities are identified as root causes. Extensive experiments on three real-world datasets validate the effectiveness of the proposed framework.

Incremental Causal Graph Learning for Online Root Cause Localization

The task of root cause analysis (RCA) is to identify the root causes of system faults/failures by analyzing system monitoring data. Efficient RCA can greatly accelerate system failure recovery and mitigate system damages or financial losses. However, previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process, a significant amount of time and data to train a robust model, and then being retrained from scratch for a new system fault.In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model. CORAL consists of Trigger Point Detection, Incremental Disentangled Causal Graph Learning, and Network Propagation-based Root Cause Localization. The Trigger Point Detection component aims to detect system state transitions automatically and in near-real-time. To achieve this, we develop an online trigger point detection approach based on multivariate singular spectrum analysis and cumulative sum statistics. To efficiently update the RCA model, we propose an incremental disentangled causal graph learning approach to decouple the state-invariant and state-dependent information. After that, CORAL applies a random walk with restarts to the updated causal graph to accurately identify root causes. The online RCA process terminates when the causal graph and the generated root cause list converge. Extensive experiments on three real-world datasets demonstrate the effectiveness and superiority of the proposed framework.