Zhengzhang Chen NEC Labs America

Zhengzhang Chen

Senior Researcher

Data Science and System Security

Posts

Superclass-Conditional Gaussian Mixture Model for Coarse-To-Fine Few-Shot Learning

Learning fine-grained embeddings is essential for extending the generalizability of models pre-trained on “coarse” labels (e.g., animals). It is crucial to fields for which fine-grained labeling (e.g., breeds of animals) is expensive, but fine-grained prediction is desirable, such as medicine. The dilemma necessitates adaptation of a “coarsely” pre-trained model to new tasks with a few “finer-grained” training labels. However, coarsely supervised pre-training tends to suppress intra-class variation, which is vital for cross-granularity adaptation. In this paper, we develop a training framework underlain by a novel superclass-conditional Gaussian mixture model (SCGM). SCGM imitates the generative process of samples from hierarchies of classes through latent variable modeling of the fine-grained subclasses. The framework is agnostic to the encoders and only adds a few distribution related parameters, thus is efficient, and flexible to different domains. The model parameters are learned end-to-end by maximum-likelihood estimation via a principled Expectation-Maximization algorithm. Extensive experiments on benchmark datasets and a real-life medical dataset indicate the effectiveness of our method.

Interpreting Convolutional Sequence Model by Learning Local Prototypes with Adaptation Regularization

In many high-stakes applications of machine learning models, outputting only predictions or providing statistical confidence is usually insufficient to gain trust from end users, who often prefer a transparent reasoning paradigm. Despite the recent encouraging developments on deep networks for sequential data modeling, due to the highly recursive functions, the underlying rationales of their predictions are difficult to explain. Thus, in this paper, we aim to develop a sequence modeling approach that explains its own predictions by breaking input sequences down into evidencing segments (i.e., sub-sequences) in its reasoning. To this end, we build our model upon convolutional neural networks, which, in their vanilla forms, associates local receptive fields with outputs in an obscure manner. To unveil it, we resort to case-based reasoning, and design prototype modules whose units (i.e., prototypes) resemble exemplar segments in the problem domain. Each prediction is obtained by combining the comparisons between the prototypes and the segments of an input. To enhance interpretability, we propose a training objective that delicately adapts the distribution of prototypes to the data distribution in latent spaces, and design an algorithm to map prototypes to human-understandable segments. Through extensive experiments in a variety of domains, we demonstrate that our model can achieve high interpretability generally, together with a competitive accuracy to the state-of-the-art approaches.

Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs

Detecting anomalies in dynamic graphs is a vital task, with numerous practical applications in areas such as security, finance, and social media. Existing network embedding based methods have mostly focused on learning good node representations, whereas largely ignoring the subgraph structural changes related to the target nodes in a given time window. In this paper, we propose StrGNN, an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs. In particular, we first extract the h-hop enclosing subgraph centered on the target edge and propose a node labeling function to identify the role of each node in the subgraph. Then, we leverage the graph convolution operation and Sortpooling layer to extract the fixed-size feature from each snapshot/timestamp. Based on the extracted features, we utilize the Gated Recurrent Units to capture the temporal information for anomaly detection. We fully implement StrGNN and deploy it into a real enterprise security system, and it greatly helps detect advanced threats and optimize the incident response. Extensive experiments on six benchmark datasets also demonstrate the effectiveness of StrGNN.

Convolutional Transformer based Dual Discriminator Generative Adversarial Networks for Video Anomaly Detection

Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this problem, few of them can capture the normal spatio-temporal patterns effectively and efficiently. Moreover, existing works seldom explicitly consider the local consistency at frame level and global coherence of temporal dynamics in video sequences. To this end, we propose Convolutional Transformer based Dual Discriminator Generative Adversarial Networks (CT-D2GAN) to perform unsupervised video anomaly detection. Specifically, we first present a convolutional transformer to perform future frame prediction. It contains three key components, i.e., a convolutional encoder to capture the spatial information of the input video clips, a temporal self-attention module to encode the temporal dynamics, and a convolutional decoder to integrate spatio-temporal features and predict the future frame. Next, a dual discriminator based adversarial training procedure, which jointly considers an image discriminator that can maintain the local consistency at frame-level and a video discriminator that can enforce the global coherence of temporal dynamics, is employed to enhance the future frame prediction. Finally, the prediction error is used to identify abnormal video frames. Thoroughly empirical studies on three public video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the effectiveness of the proposed adversarial spatio-temporal modeling framework.

Multi-Scale One-Class Recurrent Neural Networks for Discrete Event Sequence Anomaly Detection

Discrete event sequences are ubiquitous, such as an ordered event series of process interactions in Information and Communication Technology systems. Recent years have witnessed increasing efforts in detecting anomalies with discrete event sequences. However, it remains an extremely difficult task due to several intrinsic challenges including data imbalance issues, discrete property of the events, and sequential nature of the data. To address these challenges, in this paper, we propose OC4Seq, a multi-scale one-class recurrent neural network for detecting anomalies in discrete event sequences. Specifically, OC4Seq integrates the anomaly detection objective with recurrent neural networks (RNNs) to embed the discrete event sequences into latent spaces, where anomalies can be easily detected. In addition, given that an anomalous sequence could be caused by either individual events, subsequences of events, or the whole sequence, we design a multi-scale RNN framework to capture different levels of sequential patterns simultaneously. We fully implement and evaluate OC4Seq on three real-world system log datasets. The results show that OC4Seq consistently outperforms various representative baselines by a large margin. Moreover, through both quantitative and qualitative analysis, the importance of capturing multi-scale sequential patterns for event anomaly detection is verified. To encourage reproducibility, we make the code and data publicly available.

FACESEC: A Fine-grained Robustness Evaluation Framework for Face Recognition Systems

We present FACESEC, a framework for fine-grained robustness evaluation of face recognition systems. FACESEC evaluation is performed along four dimensions of adversarial modeling: the nature of perturbation (e.g., pixel-level or face accessories), the attacker’s system knowledge (about training data and learning architecture), goals (dodging or impersonation), and capability (tailored to individual inputs or across sets of these). We use FACESEC to study five face recognition systems in both closed-set and open-set settings, and to evaluate the state-of-the-art approach for defending against physically realizable attacks on these. We find that accurate knowledge of neural architecture is significantly more important than knowledge of the training data in black-box attacks. Moreover, we observe that open-set face recognition systems are more vulnerable than closed-set systems under different types of attacks. The efficacy of attacks for other threat model variations, however, appears highly dependent on both the nature of perturbation and the neural network architecture. For example, attacks that involve adversarial face masks are usually more potent, even against adversarially trained models, and the ArcFace architecture tends to be more robust than the others.

Automated Anomaly Detection via Curiosity-Guided Search and Self-Imitation Learning

Anomaly detection is an important data mining task with numerous applications, such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with complicated data, the process of building an effective deep learning-based system for anomaly detection still highly relies on human expertise and laboring trials. Also, while neural architecture search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for anomaly detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this article, we propose AutoAD, an automated anomaly detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we first design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controller’s internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoAD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

AutoOD: Neural Architecture Search for Outlier Detection

Outlier detection is an important data mining task with numerous applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific task with complex data, the process of building an effective deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Moreover, while Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series

Forecasting on Sparse Multivariate Time Series Forecasting on sparse multivariate time series (MTS) aims to model the predictors of future values of time series given their incomplete past, which is important for many emerging applications. However, most existing methods process MTS’s individually, and do not leverage the dynamic distributions underlying the MTS’s, leading to sub-optimal results when the sparsity is high. To address this challenge, we propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations, to achieve robust modeling. It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures, and is used for emitting time series. The generative model is parameterized by neural networks. A structured inference network is also designed for enabling inductive analysis. A gating mechanism is further introduced to dynamically tune the Gaussian mixture distributions. Extensive experimental results on a variety of real-life datasets demonstrate the effectiveness of our method.

This is Why We Can’t Cache Nice Things: Lightning-Fast Threat Hunting using Suspicion-Based Hierarchical Storage

Recent advances in causal analysis can accelerate incident response time, but only after a causal graph of the attack has been constructed. Unfortunately, existing causal graph generation techniques are mainly offline and may take hours or days to respond to investigator queries, creating greater opportunity for attackers to hide their attack footprint, gain persistency, and propagate to other machines. To address that limitation, we present Swift, a threat investigation system that provides high-throughput causality tracking and real-time causal graph generation capabilities. We design an in-memory graph database that enables space-efficient graph storage and online causality tracking with minimal disk operations. We propose a hierarchical storage system that keeps forensically-relevant part of the causal graph in main memory while evicting rest to disk. To identify the causal graph that is likely to be relevant during the investigation, we design an asynchronous cache eviction policy that calculates the most suspicious part of the causal graph and caches only that part in the main memory. We evaluated Swift on a real-world enterprise to demonstrate how our system scales to process typical event loads and how it responds to forensic queries when security alerts occur. Results show that Swift is scalable, modular, and answers forensic queries in real-time even when analyzing audit logs containing tens of millions of events.