Entries by NEC Labs America

Machine Learning Model for EDFA Predicting SHB Effects

Experiments show that machine learning model of an EDFA is capable of modelling spectral hole burning effects accurately. As a result, it significantly outperforms black-box models that neglect inhomogeneous effects. Model achieves a record average RMSE of 0.0165 dB between the model predictions and measurements.

Extension of the Local-Optimization Global-Optimization (LOGO) Launch Power Strategy to Multi-Band Optical Networks

We propose extending the LOGO strategy for launch power settings to multi-band scenarios, maintaining low complexity while addressing key inter-band nonlinear effects and accurate amplifier models. This methodology simplifies multi-band optical multiplex section control, providing an immediate, descriptive estimation of optimized launch power.

Predicting Spatially Resolved Gene Expression via Tissue Morphology using Adaptive Spatial GNNs (ECCB)

Spatial transcriptomics technologies, which generate a spatial map of gene activity, can deepen the understanding of tissue architecture and its molecular underpinnings in health and disease. However, the high cost makes these technologies difficult to use in practice. Histological images co-registered with targeted tissues are more affordable and routinely generated in many research and clinical studies. Hence, predicting spatial gene expression from the morphological clues embedded in tissue histological images provides a scalable alternative approach to decoding tissue complexity.

OPENCAM: Lensless Optical Encryption Camera

Lensless cameras multiplex the incoming light before it is recorded by the sensor. This ability to multiplex the incoming light has led to the development of ultra-thin, high-speed, and single-shot 3D imagers. Recently, there have been various attempts at demonstrating another useful aspect of lensless cameras – their ability to preserve the privacy of a scene by capturing encrypted measurements. However, existing lensless camera designs suffer numerous inherent privacy vulnerabilities. To demonstrate this, we develop the first comprehensive attack model for encryption cameras, and propose OpEnCam – a novel lensless optical en cryption ca mera design that overcomes these vulnerabilities. OpEnCam encrypts the incoming light before capturing it using the modulating ability of optical masks. Recovery of the original scene from an OpEnCam measurement is possible only if one has access to the camera’s encryption key, defined by the unique optical elements of each camera. Our OpEnCam design introduces two major improvements over existing lensless camera designs – (a) the use of two co-axially located optical masks, one stuck to the sensor and the other a few millimeters above the sensor and (b) the design of mask patterns, which are derived heuristically from signal processing ideas. We show, through experiments, that OpEnCam is robust against a range of attack types while still maintaining the imaging capabilities of existing lensless cameras. We validate the efficacy of OpEnCam using simulated and real data. Finally, we built and tested a prototype in the lab for proof-of-concept.

MCTR: Multi Camera Tracking Transformer

Multi-camera tracking plays a pivotal role in various real-world applications. While end-to-end methods have gained significant interest in single-camera tracking, multi-camera tracking remains predominantly reliant on heuristic techniques. In response to this gap, this paper introduces Multi-Camera Tracking tRansformer (MCTR), a novel end-to-end approach tailored for multi-object detection and tracking across multiple cameras with overlapping fields of view. MCTR leverages end-to-end detectors like DEtector TRansformer (DETR) to produce detections and detection embeddings independently for each camera view. The framework maintains set of track embeddings that encaplusate global information about the tracked objects, and updates them at every frame by integrating the local information from the view-specific detection embeddings. The track embeddings are probabilistically associated with detections in every camera view and frame to generate consistent object tracks. The soft probabilistic association facilitates the design of differentiable losses that enable end-to-end training of the entire system. To validate our approach, we conduct experiments on MMPTrack and AI City Challenge, two recently introduced large-scale multi-camera multi-object tracking datasets.