Entries by NEC Labs America

Improvement of Resilience of Submarine Networks Based on Fiber Sensing

Simultaneous phase and polarization sensing with span length resolution using the supervisory path is demonstrated. It is shown that by measuring polarization rotation matrix of the return paths, instead of monitoring only the state of polarization, location of the polarization disturbance can be determined even for large polarization rotations. By using the polarization rotation matrices, the phase and polarization disturbances are successfully decoupled. How the existing supervisory system and sensing can coexist in new SDM cables that utilizes pump sharing is discussed.

Data-driven Modelling of EDFAs by Neural Networks

Dependence of EDFA gain shape on input power and input spectrum shape is modelled using a simple neural network-based architecture for amplifiers with different gains and output powers. The model can predict the gain within ±0.1 dB. Even though the model has good success predicting the performance of the particular EDFA it is trained with, it is not as successful when used to predict a different EDFA, or even the same EDFA with a different pump power. However, retraining the model with a small amount of supplementary data from a second EDFA makes the model able to predict the performance of the second EDFA with little loss in performance.

Dynamic Prompting: A Unified Framework for Prompt Tuning

It has been demonstrated that prompt tuning is highly effective in efficiently eliciting knowledge from language models (LMs). However, the prompt tuning still lags behind fine tuning, especially when the LMs are small. P tuning v2 (Liu et al., 2021b) makes it comparable with finetuning by adding continuous prompts for every layer of the pre trained model. However, prepending fixed soft prompts for all instances, regardless of their discrepancy, is doubtful. In particular, the inserted prompt position, length, and the representations ofprompts for diversified instances through different tasks could all affect the prompt tuning performance. To fill this gap, we propose dynamic prompting (DP): the position, length, and prompt representation can all be dynamically optimized with respect to different tasks and instances. We conduct comprehensive experiments on the SuperGlue benchmark tovalidate our hypothesis and demonstrate substantial improvements. We also derive a unified framework for supporting our dynamic prompting strategy. In particular, we use a simple learning network and Gumble Softmax for learning instance dependent guidance. Experimental results show that simple instance level position aware soft prompts can improve the classification accuracy of up to 6 points on average on five datasets, reducing its gap with fine tuning. Besides, we also prove its universal usefulness under full data, few shot, andmultitask regimes. Combining them together can even further unleash the power of DP, narrowing the distance between fine tuning.

Content-aware auto-scaling of stream processing applications on container orchestration platforms

Modern applications are designed as an interacting set of microservices, and these applications are typically deployed on container orchestration platforms like Kubernetes. Several attractive features in Kubernetes make it a popular choice for deploying applications, and automatic scaling is one such feature. The default horizontal scaling technique in Kubernetes is the Horizontal Pod Autoscaler (HPA). It scales each microservice independently while ignoring the interactions among the microservices in an application. In this paper, we show that ignoring such interactions by HPA leads to inefficient scaling, and the optimal scaling of different microservices in the application varies as the stream content changes. To automatically adapt to variations in stream content, we present a novel system called DataX AutoScaler that leverages knowledge of the entire stream processing application pipeline to efficiently auto-scale different microservices by taking into account their complex interactions. Through experiments on real-world video analytics applications, such as face recognition and pose classification, we show that DataX AutoScaler adapts to variations in stream content and achieves up to 43% improvement in overall application performance compared to a baseline system that uses HPA.

Exploring the limits of ChatGPT for Query or Aspect based Text Summarization

Text summarization has been a crucial problem in natural language processing (NLP) for several decades. It aims to condense lengthy documents into shorter versions while retaining the most critical information. Various methods have been proposed for text summarization, including extractive and abstractive summarization. The emergence of large language models (LLMs) like GPT3 and ChatGPT has recently created significant interest in using these models for text summarization tasks. Recent studies (Goyal et al., 2022, Zhang et al., 2023) have shown that LLMs generated news summaries are already on par with humans. However, the performance of LLMs for more practical applications like aspect or query based summaries is underexplored. To fill this gap, we conducted an evaluation of ChatGPT’s performance on four widely used benchmark datasets, encompassing diverse summaries from Reddit posts, news articles, dialogue meetings, and stories. Our experiments reveal that ChatGPT’s performance is comparable to traditional fine tuning methods in terms of Rouge scores. Moreover, we highlight some unique differences between ChatGPT generated summaries and human references, providing valuable insights into the superpower of ChatGPT for diverse text summarization tasks. Our findings call for new directions in this area, and we plan to conduct further research to systematically examine the characteristics of ChatGPT generated summaries through extensive human evaluation.

DAS over 1,007-km Hybrid Link with 10-Tb/s DP-16QAM Co-propagation using Frequency-Diverse Chirped Pulses

We report the first distributed acoustic sensing (DAS) experiment with over >1,000 km reach on a hybrid link comprising of a mixture of field and lab fibers with bi-directional inline Raman amplification after each span. We used 20× frequency-diversity chirped-pulses for the probe signal,and recovered the Rayleigh backscatter using a coherent receiver with correlation detection and diversity combining. A measurand resolution of ∼100 pϵ/√ Hz at a gauge length of 20 meters achieved in the offline experiment. We also demonstrate the first real-time FPGA implementation of chirped-pulse DAS without frequency diversity over a range of 210 km.

Time Series Contrastive Learning with Information-Aware Augmentations

Various contrastive learning approaches have been proposed in recent years and have achieved significant empirical success. While effective and prevalent, contrastive learning has been less explored for time series data. A key component of contrastive learning is to select appropriate augmentations, imposing some priors to construct feasible positive samples, such that an encoder can be trained to learn robust and discriminative representations. Unlike image and language domains where “desired” augmented samples can be generated with the rule of thumb guided by prefabricated human priors, the ad-hoc manual selection of time series augmentations is hindered by their diverse and human-unrecognizable temporal structures. How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question. In this work, we address the problem by encouraging both high fidelity and variety based on information theory. A theoretical analysis leads to the criteria for selecting feasible data augmentations. On top of that, we propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning. Experiments on various datasets show highly competitive performance with up to a 12.0% reduction in MSE on forecasting tasks and up to 3.7% relative improvement in accuracy on classification tasks over the leading baselines.

Adversarial Alignment for Source Free Object Detection

Source-free object detection (SFOD) aims to transfer a detector pre-trained on a label-rich source domain to an unlabeled target domain without seeing source data. While most existing SFOD methods generate pseudo labels via a source-pretrained model to guide training, these pseudo labels usually contain high noises due to heavy domain discrepancy. In order to obtain better pseudo supervisions, we divide the target domain into source-similar and source-dissimilar parts and align them in the feature space by adversarial learning. Specifically, we design a detection variance-based criterion to divide the target domain. This criterion is motivated by a finding that larger detection variances denote higher recall and larger similarity to the source domain. Then we incorporate an adversarial module into a mean teacher framework to drive the feature spaces of these two subsets indistinguishable. Extensive experiments on multiple cross-domain object detection datasets demonstrate that our proposed method consistently outperforms the compared SFOD methods. Our implementation is available at https://github.com/ChuQiaosong