Split to Learn: Gradient Split for Multi-Task Human Image Analysis

This paper presents an approach to train a unified deep network that simultaneously solves multiple human-related tasks. A multi-task framework is favorable for sharing information across tasks under restricted computational resources. However, tasks not only share information but may also compete for resources and conflict with each other, making the optimization of shared parameters difficult and leading to suboptimal performance. We propose a simple but effective training scheme called GradSplit that alleviates this issue by utilizing asymmetric inter-task relations. Specifically, at each convolution module, it splits features into T groups for T tasks and trains each group only using the gradient back-propagated from the task losses with which it does not have conflicts. During training, we apply GradSplit to a series of convolution modules. As a result, each module is trained to generate a set of task-specific features using the shared features from the previous module. This enables a network to use complementary information across tasks while circumventing gradient conflicts. Experimental results show that GradSplit achieves a better accuracy-efficiency trade-off than existing methods. It minimizes accuracy drop caused by task conflicts while significantly saving compute resources in terms of both FLOPs and memory at inference. We further show that GradSplit achieves higher cross-dataset accuracy compared to single-task and other multi-task networks.

On TCR Binding Predictors Failing to Generalize to Unseen Peptides

Several recent studies investigate TCR-peptide/-pMHC binding prediction using machine learning or deep learning approaches. Many of these methods achieve impressive results on test sets, which include peptide sequences that are also included in the training set. In this work, we investigate how state of the-art deep learning models for TCR-peptide/-pMHC binding prediction generalize to unseen peptides. We create a dataset including positive samples from IEDB, VDJdb, McPAS-TCR, and the MIRA set, as well as negative samples from both randomization and 10X Genomics assays. We name this collection of samples TChard. We propose the hard split, a simple heuristic for training/test split, which ensures that test samples exclusively present peptides that do not belong to the training set. We investigate the effect of different training/test splitting techniques on the models’ test performance, as well as the effect of training and testing the models using mismatched negative samples generated randomly, in addition to the negative samples derived from assays. Our results show that modern deep learning methods fail to generalize to unseen peptides. We provide an explanation why this happens and verify our hypothesis on the TChard dataset. We then conclude that robust prediction of TCR recognition is still far for being solved.

DyCo: Dynamic, Contextualized AI Models

Devices with limited computing resources use smaller AI models to achieve low-latency inferencing. However, model accuracy is typically much lower than the accuracy of a bigger model that is trained and deployed in places where the computing resources are relatively abundant. We describe DyCo, a novel system that ensures privacy of stream data and dynamically improves the accuracy of small models used in devices. Unlike knowledge distillation or federated learning, DyCo treats AI models as black boxes. DyCo uses a semi-supervised approach to leverage existing training frameworks and network model architectures to periodically train contextualized, smaller models for resource-constrained devices. DyCo uses a bigger, highly accurate model in the edge-cloud to auto-label data received from each sensor stream. Training in the edge-cloud (as opposed to the public cloud) ensures data privacy, and bespoke models for thousands of live data streams can be designed in parallel by using multiple edge-clouds. DyCo uses the auto-labeled data to periodically re-train, stream-specific, bespoke small models. To reduce the periodic training costs, DyCo uses different policies that are based on stride, accuracy, and confidence information.We evaluate our system, and the contextualized models, by using two object detection models for vehicles and people, and two datasets (a public benchmark and another real-world proprietary dataset). Our results show that DyCo increases the mAP accuracy measure of small models by an average of 16.3% (and up to 20%) for the public benchmark and an average of 19.0% (and up to 64.9%) for the real-world dataset. DyCo also decreases the training costs for contextualized models by more than an order of magnitude.

Attentive Variational Information Bottleneck for TCR–peptide interaction prediction

We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides.ResultsExperimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR–peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences.

Deep Federated Anomaly Detection for Multivariate Time Series Data

Although many anomaly detection approaches have been developed for multivariate time series data, limited effort has been made in federated settings in which multivariate time series data are heterogeneously distributed among different edge devices while data sharing is prohibited. In this paper, we investigate the problem of federated unsupervised anomaly detection and present a Federated Exemplar-based Deep Neural Network (Fed-ExDNN) to conduct anomaly detection for multivariate time series data on different edge devices. Specifically, we first design an Exemplar-based Deep Neural network (ExDNN) for learning local time series representations based on their compatibility with an exemplar module which consists of hidden parameters learned to capture varieties of normal patterns on each edge device. Next, a constrained clustering mechanism (FedCC) is employed on the centralized server to align and aggregate the parameters of different local exemplar modules to obtain a unified global exemplar module. Finally, the global exemplar module is deployed together with a shared feature encoder to each edge device, and anomaly detection is conducted by examining the compatibility of testing data to the exemplar module. Fed-ExDNN captures local normal time series patterns with ExDNN and aggregates these patterns by FedCC, and thus can handle the heterogeneous data distributed over different edge devices simultaneously. Thoroughly empirical studies on six public datasets show that ExDNN and Fed-ExDNN can outperform state-of-the-art anomaly detection algorithms and federated learning techniques, respectively.

Towards Robust Graph Neural Networks via Adversarial Contrastive Learning

Graph Neural Network (GNN), as a powerful representation learning model on graph data, attracts much attention across various disciplines. However, recent studies show that GNN is vulnerable to adversarial attacks. How to make GNN more robust? What are the key vulnerabilities in GNN? How to address the vulnerabilities and defend GNN against the adversarial attacks? Adversarial training has shown to be effective in improving the robustness of traditional Deep Neural Networks (DNNs). However, existing adversarial training works mainly focus on the image data, which consists of continuous features, while the features and structures of graph data are often discrete. Moreover, rather than assuming each sample is independent and identically distributed as in DNN, GNN leverages the contextual information across the graph (e.g., neighborhoods of a node). Thus, existing adversarial training techniques cannot be directly applied to defend GNN. In this paper, we propose ContrastNet, an effective adversarial defense framework for GNN. In particular, we propose an adversarial contrastive learning method to train the GNN over the adversarial space. To further improve the robustness of GNN, we investigate the latent vulnerabilities in every component of a GNN encoder and propose corresponding refining strategies. Extensive experiments on three public datasets demonstrate the effectiveness of ContrastNet in improving the robustness of popular GNN variants, such as Graph Convolutional Network and GraphSage, under various types of adversarial attacks.

KGxBoard: Explainable and Interactive Leaderboard for Evaluation of Knowledge Graph Completion Models

Knowledge Graphs (KGs) store information in the form of (head, predicate, tail)-triples. To augment KGs with new knowledge, researchers proposed models for KG Completion (KGC) tasks such as link prediction, i.e., answering (h, p, ?) or (?, p, t) queries. Such models are usually evaluated with averaged metrics on a held-out test set. While useful for tracking progress, averaged single-score metrics cannotreveal what exactly a model has learned — or failed to learn. To address this issue, we propose KGxBoard: an interactive framework for performing fine-grained evaluation on meaningful subsets of the data, each of which tests individual and interpretable capabilities of a KGC model. In our experiments, we highlight the findings that we discovered with the use of KGxBoard, which would have been impossible to detect with standard averaged single-score metrics.

DeepGAR: Deep Graph Learning for Analogical Reasoning

Analogical reasoning is the process of discovering and mapping correspondences from a target subject to a base subject. As the most well-known computational method of analogical reasoning, Structure-Mapping Theory (SMT) abstracts both target and base subjects into relational graphs and forms the cognitive process of analogical reasoning by finding a corresponding subgraph (i.e., correspondence) in the target graph that is aligned with the base graph. However, incorporating deep learning for SMT is still under-explored due to several obstacles: 1) the combinatorial complexity of searching for the correspondence in the target graph, 2) the correspondence mining is restricted by various cognitive theory-driven constraints. To address both challenges, we propose a novel framework for Analogical Reasoning (DeepGAR) that identifies the correspondence between source and target domains by assuring cognitive theory-driven constraints. Specifically, we design a geometric constraint embedding space to induce subgraph relation from node embeddings for efficient subgraph search. Furthermore, we develop novel learning and optimization strategies that could end-to-end identify correspondences that are strictly consistent with constraints driven by the cognitive theory. Extensive experiments are conducted on synthetic and real-world datasets to demonstrate the effectiveness of the proposed DeepGAR over existing methods. The code and data are available at: https://github.com/triplej0079/DeepGAR.

Personalized Federated Learning via Heterogeneous Modular Networks

Personalized Federated Learning (PFL) which collaboratively trains a federated model while considering local clients under privacy constraints has attracted much attention. Despite its popularity, it has been observed that existing PFL approaches result in sub-optimal solutions when the joint distribution among local clients diverges. To address this issue, we present Federated Modular Network (FedMN), a novel PFL approach that adaptively selects sub-modules from a module pool to assemble heterogeneous neural architectures for different clients. FedMN adopts a light-weighted routing hypernetwork to model the joint distribution on each client and produce the personalized selection of the module blocks for each client. To reduce the communication burden in existing FL, we develop an efficient way to interact between the clients and the server. We conduct extensive experiments on the real-world test beds and the results show both effectiveness and efficiency of the proposed FedMN over the baselines.

Using Global Fiber Networks for Environmental Sensing

We review recent advances in distributed fiber optic sensing (DFOS) and their applications. The scattering mechanisms in glass, which are exploited for reflectometry-based DFOS, are Rayleigh, Brillouin, and Raman scatterings. These are sensitive to either strain and/or temperature, allowing optical fiber cables to monitor their ambient environment in addition to their conventional role as a medium for telecommunications. Recently, DFOS leveraged technologies developed for telecommunications, such as coherent detection, digital signal processing, coding, and spatial/frequency diversity, to achieve improved performance in terms of measurand resolution, reach, spatial resolution, and bandwidth. We review the theory and architecture of commonly used DFOS methods. We provide recent experimental and field trial results where DFOS was used in wide-ranging applications, such as geohazard monitoring, seismic monitoring, traffic monitoring, and infrastructure health monitoring. Events of interest often have unique signatures either in the spatial, temporal, frequency, or wavenumber domains. Based on the temperature and strain raw data obtained from DFOS, downstream postprocessing allows the detection, classification, and localization of events. Combining DFOS with machine learning methods, it is possible to realize complete sensor systems that are compact, low cost, and can operate in harsh environments and difficult-to-access locations, facilitating increased public safety and smarter cities.