Optical Network Anomaly Detection and Localization Based on Forward Transmission Sensing and Route Optimization

We introduce a novel scheme to detect and localize optical network anomaly using forward transmission sensing, and develop a heuristic algorithm to optimize the route selection. The performance is verified via simulations and network experiments.

Improving Real-time Data Streams Performance on Autonomous Surface Vehicles using DataX

In the evolving Artificial Intelligence (AI) era, the need for real-time algorithm processing in marine edge environments has become a crucial challenge. Data acquisition, analysis, and processing in complex marine situations require sophisticated and highly efficient platforms. This study optimizes real-time operations on a containerized distributed processing platform designed for Autonomous Surface Vehicles (ASV) to help safeguard the marine environment. The primary objective is to improve the efficiency and speed of data processing by adopting a microservice management system called DataX. DataX leverages containerization to break down operations into modular units, and resource coordination is based on Kubernetes. This combination of technologies enables more efficient resource management and real-time operations optimization, contributing significantly to the success of marine missions. The platform was developed to address the unique challenges of managing data and running advanced algorithms in a marine context, which often involves limited connectivity, high latencies, and energy restrictions. Finally, as a proof of concept to justify this platform’s evolution, experiments were carried out using a cluster of single-board computers equipped with GPUs, running an AI-based marine litter detection application and demonstrating the tangible benefits of this solution and its suitability for the needs of maritime missions.

LARA: Latency-Aware Resource Allocator for Stream Processing Applications

One of the key metrics of interest for stream processing applications is “latency”, which indicates the total time it takes for the application to process and generate insights from streaming input data. For mission-critical video analytics applications like surveillance and monitoring, it is of paramount importance to report an incident as soon as it occurs so that necessary actions can be taken right away. Stream processing applications are typically developed as a chain of microservices and are deployed on container orchestration platforms like Kubernetes. Allocation of system resources like “cpu” and “memory” to individual application microservices has direct impact on “latency”. Kubernetes does provide ways to allocate these resources e.g. through fixed resource allocation or through vertical pod autoscaler (VPA), however there is no straightforward way in Kubernetes to prioritize “latency” for an end-to end application pipeline. In this paper, we present LARA, which is specifically designed to improve “latency” of stream processing application pipelines. LARA uses a regression-based technique for resource allocation to individual microservices. We implement four real-world video analytics application pipelines i.e. license plate recognition, face recognition, human attributes detection and pose detection, and show that compared to fixed allocation, LARA is able to reduce latency by up to ? 2.8X and is consistently better than VPA. While reducing latency, LARA is also able to deliver over 2X throughput compared to fixed allocation and is almost always better than VPA.

Dynamic Causal Discovery in Imitation Learning

Imitation learning, which learns agent policy by mimicking expert demonstration, has shown promising results in many applications such as medical treatment regimes and self-driving vehicles. However, it remains a difficult task to interpret control policies learned by the agent. Difficulties mainly come from two aspects: 1) agents in imitation learning are usually implemented as deep neural networks, which are black-box models and lack interpretability; 2) the latent causal mechanism behind agents’ decisions may vary along the trajectory, rather than staying static throughout time steps. To increase transparency and offer better interpretability of the neural agent, we propose to expose its captured knowledge in the form of a directed acyclic causal graph, with nodes being action and state variables and edges denoting the causal relations behind predictions. Furthermore, we design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs. Concretely, we conduct causal discovery from the perspective of Granger causality and propose a self-explainable imitation learning framework, CAIL. The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner. After the model is learned, we can obtain causal relations among states and action variables behind its decisions, exposing policies learned by it. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposed CAIL in learning the dynamic causal graphs for understanding the decision-making of imitation learning meanwhilemaintaining high prediction accuracy.

Self-Consistent Decoding for More Factual Open Responses

Self-consistency has emerged as a powerful method for improving the accuracy of short answers generated by large language models. As previously defined, it only concerns the accuracy of a final answer parsed from generated text. In this work, we extend the idea to open response generation, by integrating voting into the decoding method. Each output sentence is selected from among multiple samples, conditioning on the previous selections, based on a simple token overlap score. We compare this “Sample & Select” method to greedy decoding, beam search, nucleus sampling, and the recently introduced hallucination avoiding decoders of DoLa, P-CRR, and S-CRR. We show that Sample & Select improves factuality by a 30% relative margin against these decoders in NLI-based evaluation on the subsets of CNN/DM and XSum used in the FRANK benchmark, while maintaining comparable ROUGE-1 F1 scores against reference summaries. We collect human verifications of the generated summaries, confirming the factual superiority of our method.

Distributed Fiber Optic Sensing for Fault Localization Caused by Fallen Tree Using Physics-informed ResNet

Falling trees or their limbs can cause power lines to break or sag, sometimes resulting in devastating wildfires. Conventional protections such as circuit breakers, overcurrent relays and automatic circuit reclosers may clear short circuits caused by tree contact, but they may not detect cases where the conductors remain intact or a conducting path is not sufficient to create a full short circuit. In this paper, we introduce a novel, non-intrusive monitoring technique that detects and locates fallen trees, even if a short circuit is not triggered. This method employs distributed fiber optic sensing (DFOS) to detect vibrations along the power distribution line where corresponding fiber cables are installed. A physics-informed ResNet model is then utilized to interpret this information and accurately locate fallen trees, which sets it apart from traditional black-box predictions of machine learning algorithms. Our real-scale lab tests demonstrate highly accurate and reliable fallen tree detection and localization.

Field Trial of Coexistence and Simultaneous Switching of Real-Time Fiber Sensing and Coherent 400 GbE in a Dense Urban Environment

Recent advances in optical fiber sensing have enabled telecom network operators to monitor their fiber infrastructure while generating new revenue in various application scenarios, including data center interconnect, public safety, smart cities, and seismic monitoring. However, given the high utilization of fiber networks for data transmission, it is undesirable to allocate dedicated fiber strands solely for sensing purposes. Therefore, it is crucial to ensure the reliable coexistence of fiber sensing and communication signals that co-propagate on the same fiber. In this paper, we conduct field trials in a reconfigurable optical add-drop multiplexer (ROADM) network enabled by the PAWR COSMOS testbed, utilizing metro area fibers in Manhattan, New York City. We verify the coexistence of real-time constant-amplitude distributed acoustic sensing (DAS), coherent 400 GbE, and analog radio-over-fiber (ARoF) signals. Measurement results obtained from the field trial demonstrate that the quality of transmission (QoT) of the coherent 400 GbE signal remains unaffected during co-propagation with DAS and ARoF signals in adjacent dense wavelength-division multiplexing (DWDM) channels. In addition, we present a use case of this coexistence system supporting preemptive DAS-informed optical path switching before link failure.

Fast WDM Provisioning With Minimum Probe Signals: The First Field Experiments For DC Exchanges

There are increasing requirements for data center interconnection (DCI) services, which use fiber to connect any DC distributed in a metro area and quickly establish high-capacity optical paths between cloud services and mobile edge computing and the users. In such networks, coherent transceivers with various optical frequency ranges, modulators, and modulation formats installed at each connection point must be used to meet service requirements such as fast-varying traffic requests between user computing resources. This requires technologyand architectures that enable users and DCI operators to cooperate to achieve fast provisioning of WDM links and flexible route switching in a short time, independent of the transceiver’s implementation and characteristics. We propose an approach to estimate the end-to-end (EtE) generalized signal-to-noise ratio (GSNR) accurately in a short time, not by measuring the GSNR at the operational route and wavelength for the EtE optical path but by simply applying a quality of transmission probe channel link by link, at a wavelength/modulation-formatconvenient for measurement. Assuming connections between transceivers of various frequency ranges, modulators, and modulation formats, we propose a device software architecture in which the DCI operator optimizes the transmission mode between user transceivers with high accuracy using only common parameters such as the bit error rate. In this paper, we first implement software libraries for fast WDM provisioning and experimentally build different routes to verify the accuracy of this approach. For the operational EtE GSNR measurements, theaccuracy estimated from the sum of the measurements for each link was 0.6 dB, and the wavelength-dependent error was about 0.2 dB. Then, using field fibers deployed in the NSF COSMOS testbed, a Linux-based transmission device software architecture, and transceivers with different optical frequency ranges, modulators, andmodulation formats, the fast WDM provisioning of an optical path was completed within 6 min.

A system-on-chip microwave photonic processor solves dynamic RF interference in real-time with femtosecond latency

Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5?G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305?Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing.

Enabling Cooperative Hybrid Beamforming in TDD-based Distributed MIMO Systems

Distributed massive MIMO networks are envisioned to realize cooperative multi-point transmission in next-generation wireless systems. For efficient cooperative hybrid beamforming, the cluster of access points (APs) needs to obtain precise estimates of the uplink channel to perform reliable downlink precoding. However, due to the radio frequency (RF) impairments between the transceivers at the two en-points of the wireless channel, full channel reciprocity does not hold which results in performance degradation in the cooperative hybrid beamforming (CHBF) unless a suitable reciprocity calibration mechanism is in place. We propose a two-step approach to calibrate any two hybrid nodes in the distributed MIMO system. We then present and utilize the novel concept of reciprocal tandem to propose a low-complexity approach for jointly calibrating the cluster of APs and estimating the downlink channel. Finally, we validate our calibration technique’s effectiveness through numerical simulation.