EcoDoc: A Cost-Efficient Multimodal Document Processing System for Enterprises Using LLMs

Enterprises are increasingly adopting Generative AI applications to extract insights from large volumes of multimodal documents in domains such as finance, law, healthcare, and industry. These documents contain structured and unstructured data (images, charts, handwritten texts, etc.) requiring robust AI systems for effective retrieval and comprehension. Recent advancements in Retrieval-Augmented Generation (RAG) frameworks and Vision-Language Models (VLMs) have improved retrieval performance on multimodal documents by processing pages as images. However, large-scale deployment remains challenging due to the high cost of LLM API usage and the slower inference speed of image-based processing of pages compared to text-based processing. To address these challenges, we propose EcoDoc, a cost-effective multimodal document processing system that dynamically selects the processing modalities for each page as an image or text based on page characteristics and query intent. Our experimental evaluation on TAT-DQA and DocVQA benchmarks shows that EcoDoc reduces average query processing latency by up to 2.29× and cost by up to 10×, without compromising accuracy.

National Intern Day at NEC Laboratories America: Celebrating the Next Generation of Innovators

On National Intern Day, NEC Laboratories America celebrates the bright minds shaping tomorrow’s technology. Each summer, interns from top universities work side-by-side with our researchers on real-world challenges in AI, cybersecurity, data science, and more. From groundbreaking research to team-building events, our interns contribute fresh ideas and bold thinking that power NEC’s innovation engine.

XPF: Agentic AI System for Business Workflow Automation

In this paper, we propose a novel agentic AI system called XPF, which enables users to create “agents” using just natural language, where each agent is capable of executing complex, real-world business workflows in an accurate and reliable manner. XPF provides an interface to develop and iterate over the agent creation process and then deploy the agent in production when satisfactory results are produced consistently. The key components of XPF include: (a) planner, which leverages LLM to generate a step-by-step plan, which can further be edited by a human (b) compiler, which leverages LLM to compile the plan into a flow graph (c) executor, which handles distributed execution of the flow graph (using LLM, tools, RAG, etc.) on an underlying cluster and (d) verifier, which helps in verification of the output (through human generated tests or auto-generated tests using LLM). We develop five different agents using XPF and conduct experiments to evaluate one particular aspect i.e. difference in accuracy and reliability of the five agents with “human-generated” vs “auto-generated” plans. Our experiments show that we can get much more accurate and reliable response for a business workflow when step-by-step instructions (in natural language) are given by a human familiar with the workflow, rather than letting the LLM figure out the execution plan steps. In particular, we observe that “human-generated” plan almost always gives 100% accuracy whereas “auto-generated” plan almost never gives 100% accuracy. In terms of reliability, we observe through Rouge-L, Blue and Meteor scores, that the output from “human-generated” plan is much more reliable than “auto-generated” plan.

Quantitative Bounds for Length Generalization in Transformers

We provide quantitative bounds on the length of sequences required to be observed during training for a transformer to length generalize, e.g., to continue to perform well on sequences unseen during training. Our results improve on Huang et al. [8], who show that there is a finite training length beyond which length generalization is guaranteed, but for which they do not provide quantitative bounds.

Re-ranking the Context for Multimodal Retrieval Augmented Generation

Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge to generate a response within a context with improved accuracy and reduced hallucinations. However, multi-modal RAG systems face unique challenges: (i) the retrieval process may select irrelevant entries to user query (e.g., images, documents), and (ii) vision-language models or multi-modal language models like GPT-4o may hallucinate when processing these entries to generate RAG output. In this paper, we aim to address the first challenge, i.e, improving the selection of relevant context from the knowledge-base in retrieval phase of the multi-modal RAG. Specifically, we leverage the relevancy score (RS) measure designed in our previous work for evaluating the RAG performance to select more relevant entries in retrieval process. The retrieval based on embeddings, say CLIP-based embedding, and cosine similarity usually perform poorly particularly for multi-modal data. We show that by using a more advanced relevancy measure, one can enhance the retrieval process by selecting more relevant pieces from the knowledge-base and eliminate the irrelevant pieces from the context by adaptively selecting up-to-?? entries instead of fixed number of entries. Our evaluation using COCO dataset demonstrates significant enhancement in selecting relevant context and accuracy of the generated response.

PPDiff: Diffusing in Hybrid Sequence-Structure Space for Protein-Protein Complex Design

Designing protein-binding proteins with high affinity is critical in biomedical research and biotechnology. Despite recent advancements targeting specific proteins, the ability to create high-affinity binders for arbitrary protein targets on demand, without extensive rounds of wet-lab testing,remains a significant challenge. Here, we introduce PPDiff, a diffusion model to jointly design the sequence and structure of binders for arbitrary protein targets in a non-autoregressive manner. PPDiff builds upon our developed Sequence Structure Interleaving Network with Causal attention layers (SSINC), which integrates interleaved self-attention layers to capture global amino acid correlations, k-nearest neighbor (kNN) equivariant graph layers to model local interactions in three-dimensional (3D) space, and causal attention layers to simplify the intricate interdependencies within the protein sequence. To assess PPDiff, we curate PPBench, a general protein complex dataset comprising 706,360 complexes from the Protein Data Bank (PDB). The model is pretrained on PPBench and finetuned on two real-world applications: target-protein mini-binder complex design and antigen-antibody complex design. PPDiff consistently surpasses baseline methods, achieving success rates of 50.00%, 23.16%, and 16.89% for the pretraining task and the two downstream applications, respectively.

Beyond the Permutation Symmetry of Transformers: The Role of Rotation for Model Fusion

Symmetry in the parameter space of deep neural networks (DNNs) has proven beneficial for various deep learning applications. A well-known example is the permutation symmetry in Multi-Layer Perceptrons (MLPs), where permuting the rows of weight matrices in one layer and applying the inverse permutation to adjacent layers yields a functionally equivalent model. While permutation symmetry fully characterizes the equivalence set for MLPs, its discrete nature limits its utility for transformers. In this paper, we introduce rotation symmetry, a novel form of parameter space symmetry for transformers that generalizes permutation symmetry by rotating parameter matrices in self-attention layers. Unlike permutation symmetry, rotation symmetry operates in a continuous domain, thereby significantly expanding the equivalence set for transformers. Based on this property, we propose a theoretically optimal parameter matching algorithm as a plug-and-play module to enhance model fusion. We evaluate our approach using pre-trained transformers across diverse natural language and vision tasks. Experimental results demonstrate that our rotation symmetry based matching algorithm substantially improves model fusion, highlighting the potential of parameter space symmetry to facilitate model fusion. Our code is available on https://github.com/zhengzaiyi/RotationSymmetry.

Pathologist-Read vs AI-Driven Assessment of Tumor-Infiltrating Lymphocytes in Melanoma

Tumor-infiltrating lymphocytes (TILs) are a provocative biomarker in melanoma, influencing diagnosis, prognosis, and immunotherapy outcomes; however, traditional pathologistreadTIL assessment on hematoxylin and eosin–stained slides is prone to interobserver variability, leading to inconsistent clinical decisions. Therefore, development of newer TIL scoring approachesthat produce more reliable and consistent readouts is important.

Toward Intelligent and Efficient Optical Networks: Performance Modeling, Co-existence, and Field Trials

Optical transmission networks require intelligent traffic adaptation and efficient spectrum usage. We present scalable machine learning (ML) methods for network performance modeling, andfield trials of distributed fiber sensing and classic optical network traffic coexistence.

Span-based Polarization Sensing in Cables Without Reflectors

Polarization-based, multi-span sensing over a link without reflection-back circuits is demonstrated experimentally. It is shown that distributed reflection from Rayleigh scattering can serveas an alternative to reflectors after spatial averaging of received state-of-polarization