Andrea D’Amico

Optical Networking & Sensing Department

Posts

GNPy Experimental Validation in a C+L Multiband Optical Multiplex Section

The GNPy quality-of-transmission estimator has undergone improvements and rigorous experimental validation in a C+L multiband transmission scenario. This includes the incorporation of a disaggregated generalized Gaussian noise model, along with advanced modeling of amplifiers and transceivers. The recently proposed implementation demonstrates notable enhancements, offering highly accurate GSNR predictions on commercial C+L-band equipment while significantly reducing computation time.

Optical Amplified Line Self-Healing Using GNPy as a Service by the SDN Control

A control architecture for a partially disaggregated optical network is proposed using a GNPy-based digital twin for QoT estimation. The proposed implementation enables soft failure mitigation by autonomously adjusting the amplifier working points.

Deep Learning Gain and Tilt Adaptive Digital Twin Modeling of Optical Line Systems for Accurate OSNR Predictions

We propose a deep learning algorithm trained on varied spectral loads and EDFA working points to generate a digital twin of an optical line system able to optimize line control and to enhance OSNR predictions.

Local and Global Optimization Methods for Optical Line Control Based on Quality of Transmission

The ever-increasing demand for data traffic in recent decades has pushed network operators to give importance to the aspect of infrastructure control to facilitate its scalability and maximize its capacity. A generic lightpath (LP) is deployed starting from a traffic request between a given pair of nodes in a network. LPs are operated in the network based on an estimate of the quality of transmission (QoT), which is derived from the physical layer characteristics of a selected route. Regardless of the model used to estimate QoT, it is necessary to calibrate themodel to maximize its accuracy and define minimum design margins. The model calibration process depends significantly on the type of data that can be collected in the field (i.e., type of metric, resolution) and therefore on the available monitoring devices. In this work, a systematic evaluation of the QoT estimation is carried out on a multi-span erbium-doped-fiber-amplified optical line system (OLS) using in the first case only total power monitors and in the second experimentally emulating optical channel monitors (OCMs). Given the type of monitoring devices available, three different physical models are calibrated, and six optimization methods are used to define the optimal configuration of the target gain and tilt parameters of the optical amplifiers, jointly optimizing the working point of all amplifiers (global approach) or proceeding span by span (local approach). Subsequently, the OLS was set in each configuration obtained, and the generalized signal-to-noise ratio (GSNR) profile was measured at the end.

Semi-Automatic Line-System Provisioning with Integrated Physical-Parameter-Aware Methodology: Field Verification and Operational Feasibility

We propose methods and architecture to conduct measurements and optimize newly installed optical fiber line systems semi-automatically using integrated physics-aware technologies in a data center interconnection (DCI) transmission scenario. We demonstrate, for the first time, digital longitudinal monitoring (DLM) and optical line system (OLS) physical parameter calibration working together in real-time to extract physical link parameters for transmission performance optimization. Our methodology has the following advantages over traditional design: minimized footprint at the user site, accurate estimate of necessary optical network characteristics via complementary telemetry technologies, and ability to conduct all operation work from remotely. The last feature is crucial as remote operation personnel can implement network design settings for immediate response to quality of transmission (QoT) degradation and reverting in case of unforeseen problems. We successfully completed the semi-automatic line system provisioning over field fiber networks facilities at Duke University, Durham, NC. The tasks of parameter retrieval, equipment setting optimization, and system setup/provisioning were completed within 1 hour. The field operation was supervised by on-duty personnel who can access the system remotely from different timezones. By comparing Q-factor estimates calculated by the extracted link parameters with measured results from 400G transceivers, we confirmed our methodology has a reduction in the QoT prediction errors overexisting design.

NEC Labs America at OFC 2024 San Diego from March 24 – 28

The NEC Labs America team Yaowen Li, Andrea D’Amico, Yue-Kai Huang, Philip Ji, Giacomo Borraccini, Ming-Fang Huang, Ezra Ip, Ting Wang & Yue Tian (Not pictured: Fatih Yaman) has arrived in San Diego, CA for OFC24! Our team will be speaking and presenting throughout the event. Read more for an overview of our participation.

Inline Fiber Type Identification using In-Service Brillouin Optical Time Domain Analysis

We proposed the use of BOTDA as a monitoring tool to identify fiber types present in deployed hybrid-span fiber cables, to assist in network planning, setting optimal launch powers, and selecting correct modulation formats.

Modeling the Input Power Dependency in Transceiver BER-ONSR for QoT Estimation

We propose a method to estimate the input power dependency of the transceiver BER-OSNR characteristic. Experiments using commercial transceivers show that estimation error in Q-factor is less than 0.2 dB.

Optical Line Physical Parameters Calibration in Presence of EDFA Total Power Monitors

A method is proposed in order to improve QoT-E by calibrating the physical model parameters of an optical link post-installation, using only total power monitors integrated into the EDFAs and an OSA at the receiver.

Fast WDM Provisioning With Minimum Probe Signals: The First Field Experiments For DC Exchanges

There are increasing requirements for data center interconnection (DCI) services, which use fiber to connect any DC distributed in a metro area and quickly establish high-capacity optical paths between cloud services and mobile edge computing and the users. In such networks, coherent transceivers with various optical frequency ranges, modulators, and modulation formats installed at each connection point must be used to meet service requirements such as fast-varying traffic requests between user computing resources. This requires technologyand architectures that enable users and DCI operators to cooperate to achieve fast provisioning of WDM links and flexible route switching in a short time, independent of the transceiver’s implementation and characteristics. We propose an approach to estimate the end-to-end (EtE) generalized signal-to-noise ratio (GSNR) accurately in a short time, not by measuring the GSNR at the operational route and wavelength for the EtE optical path but by simply applying a quality of transmission probe channel link by link, at a wavelength/modulation-formatconvenient for measurement. Assuming connections between transceivers of various frequency ranges, modulators, and modulation formats, we propose a device software architecture in which the DCI operator optimizes the transmission mode between user transceivers with high accuracy using only common parameters such as the bit error rate. In this paper, we first implement software libraries for fast WDM provisioning and experimentally build different routes to verify the accuracy of this approach. For the operational EtE GSNR measurements, theaccuracy estimated from the sum of the measurements for each link was 0.6 dB, and the wavelength-dependent error was about 0.2 dB. Then, using field fibers deployed in the NSF COSMOS testbed, a Linux-based transmission device software architecture, and transceivers with different optical frequency ranges, modulators, andmodulation formats, the fast WDM provisioning of an optical path was completed within 6 min.