Posts

Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction

Camouflaged Object Detection with Feature Decomposition and Edge Reconstruction Camouflaged object detection (COD) aims to address the tough issue of identifying camouflaged objects visually blended into the surrounding backgrounds. COD is a challenging task due to the intrinsic similarity of camouflaged objects with the background, as well as their ambiguous boundaries. Existing approaches to this problem have developed various techniques to mimic the human visual system. Albeit effective in many cases, these methods still struggle when camouflaged objects are so deceptive to the vision system. In this paper, we propose the FEature Decomposition and Edge Reconstruction (FEDER) model for COD. The FEDER model addresses the intrinsic similarity of foreground and background by decomposing the features into different frequency bands using learnable wavelets. It then focuses on the most informative bands to mine subtle cues that differentiate foreground and background. To achieve this, a frequency attention module and a guidance-based feature aggregation module are developed. To combat the ambiguous boundary problem, we propose to learn an auxiliary edge reconstruction task alongside the COD task. We design an ordinary differential equation-inspired edge reconstruction module that generates exact edges. By learning the auxiliary task in conjunction with the COD task, the FEDER model can generate precise prediction maps with accurate object boundaries. Experiments show that our FEDER model significantly outperforms state-of-the-art methods with cheaper computational and memory costs.

Towards Realizing the Value of Labeled Target Samples: a Two-Stage Approach for Semi-Supervised Domain Adaptation

Towards Realizing the Value of Labeled Target Samples: a Two-Stage Approach for Semi-Supervised Domain Adaptation Semi-Supervised Domain Adaptation (SSDA) is a recently emerging research topic that extends from the widely-investigated Unsupervised Domain Adaptation (UDA) by further having a few target samples labeled, i.e., the model is trained with labeled source samples, unlabeled target samples as well as a few labeled target samples. Compared with UDA, the key to SSDA lies how to most effectively utilize the few labeled target samples. Existing SSDA approaches simply merge the few precious labeled target samples into vast labeled source samples or further align them, which dilutes the value of labeled target samples and thus still obtains a biased model. To remedy this, in this paper, we propose to decouple SSDA as an UDA problem and a semi-supervised learning problem where we first learn an UDA model using labeled source and unlabeled target samples and then adapt the learned UDA model in a semi-supervised way using labeled and unlabeled target samples. By utilizing the labeled source samples and target samples separately, the bias problem can be well mitigated. We further propose a consistency learning based mean teacher model to effectively adapt the learned UDA model using labeled and unlabeled target samples. Experiments show our approach outperforms existing methods.