Posts

Provable Adaptation Across Multiway Domains via Representation Learning

Provable Adaptation Across Multiway Domains via Representation Learning This paper studies zero-shot domain adaptation where each domain is indexed on a multi-dimensional array, and we only have data from a small subset of domains. Our goal is to produce predictors that perform well on unseen domains. We propose a model which consists of a domain-invariant latent representation layer and a domain-specific linear prediction layer with a low-rank tensor structure. Theoretically, we present explicit sample complexity bounds to characterize the prediction error on unseen domains in terms of the number of domains with training data and the number of data per domain. To our knowledge, this is the first finite-sample guarantee for zero-shot domain adaptation. In addition, we provide experiments on two-way MNIST and four-way fiber sensing datasets to demonstrate the effectiveness of our proposed model.

On Generalizing Beyond Domains in Cross Domain Continual Learning

On Generalizing Beyond Domains in Cross Domain Continual Learning Humans have the ability to accumulate knowledge of new tasks in varying conditions, but deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task. Many recent methods focus on preventing catastrophic forgetting under the assumption of train and test data following similar distributions. In this work, we consider a more realistic scenario of continual learning under domain shifts where the model must generalize its inference to an unseen domain. To this end, we encourage learning semantically meaningful features by equipping the classifier with class similarity metrics as learning parameters which are obtained through Mahalanobis similarity computations. Learning of the backbone representation along with these extra parameters is done seamlessly in an end to end manner. In addition, we propose an approach based on the exponential moving average of the parameters for better knowledge distillation. We demonstrate that, to a great extent, existing continual learning algorithms fail to handle the forgetting issue under multiple distributions, while our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.

Cross-Domain Similarity Learning for Face Recognition in Unseen Domains

Cross-Domain Similarity Learning for Face Recognition in Unseen Domains Face recognition models trained under the assumption of identical training and test distributions often suffer from poor generalization when faced with unknown variations, such as a novel ethnicity or unpredictable individual make-ups during test time. In this paper, we introduce a novel cross-domain metric learning loss, which we dub Cross-Domain Triplet (CDT) loss, to improve face recognition in unseen domains. The CDT loss encourages learning semantically meaningful features by enforcing compact feature clusters of identities from one domain, where the compactness is measured by underlying similarity metrics that belong to another training domain with different statistics. Intuitively, it discriminatively correlates explicit metrics derived from one domain, with triplet samples from another domain in a unified loss function to be minimized within a network, which leads to better alignment of the training domains. The network parameters are further enforced to learn generalized features under domain shift, in a model-agnostic learning pipeline. Unlike the recent work of Meta Face Recognition [18], our method does not require careful hard-pair sample mining and filtering strategy during training. Extensive experiments on various face recognition benchmarks show the superiority of our method in handling variations, compared to baseline and the state-of-the-art methods.

Provable Adaptation across Multiway Domains via Representation Learning

Provable Adaptation across Multiway Domains via Representation Learning This paper studies zero shot domain adaptation where each domain is indexed on a multi dimensional array, and we only have data from a small subset of domains. Our goal is to produce predictors that perform well on unseen domains. We propose a model which consists of a domain invariant latent representation layer and a domain specific linear prediction layer with a low rank tensor structure. Theoretically, we present explicit sample complexity bounds to characterize the prediction error on unseen domains in terms of the number of domains with training data and the number of data per domain. To our knowledge, this is the first finite sample guarantee for zero shot domain adaptation. In addition, we provide experiments on two way MNIST and four way fiber sensing datasets to demonstrate the effectiveness of our proposed model.

Cross Domain Similarity Learning for Face Recognition in Unseen Domains

Cross Domain Similarity Learning for Face Recognition in Unseen Domains Face recognition models trained under the assumption of identical training and test distributions often suffer from poor generalization when faced with unknown variations, such as a novel ethnicity or unpredictable individual make ups during test time. In this paper, we introduce a novel cross domain metric learning loss, which we dub Cross Domain Triplet (CDT) loss, to improve face recognition in unseen domains. The CDT loss encourages learning semantically meaningful features by enforcing compact feature clusters of identities from one domain, where the compactness is measured by underlying similarity metrics that belong to another training domain with different statistics. Intuitively, it discriminatively correlates explicit metrics derived from one domain, with triplet samples from another domain in a unified loss function to be minimized within a network, which leads to better alignment of the training domains. The network parameters are further enforced to learn generalized features under domain shift, in a model agnostic learning pipeline. Unlike the recent work of Meta Face Recognition, our method does not require careful hard pair sample mining and filtering strategy during training. Extensive experiments on various face recognition benchmarks show the superiority of our method in handling variations, compared to baseline and the state of the art methods.