Guiling Wang works at New Jersey Institute of Technology.

Posts

Learning K-way D-dimensional Discrete Embedding for Hierarchical Data Visualization and Retrieval

Traditional embedding approaches associate a real-valued embedding vector with each symbol or data point, which is equivalent to applying a linear transformation to “one-hot” encoding of discrete symbols or data objects. Despite simplicity, these methods generate storage-inefficient representations and fail to effectively encode the internal semantic structure of data, especially when the number of symbols or data points and the dimensionality of the real-valued embedding vectors are large. In this paper, we propose a regularized autoencoder framework to learn compact Hierarchical K-way D-dimensional (HKD) discrete embedding of symbols or data points, aiming at capturing essential semantic structures of data. Experimental results on synthetic and real-world datasets show that our proposed HKD embedding can effectively reveal the semantic structure of data via hierarchical data visualization and greatly reduce the search space of nearest neighbor retrieval while preserving high accuracy.

A Deep Spatio-Temporal Fuzzy Neural Network for Passenger Demand Prediction

In spite of its importance, passenger demand prediction is a highly challenging problem, because the demand is simultaneously influenced by the complex interactions among many spatial and temporal factors and other external factors such as weather. To address this problem, we propose a Spatio-TEmporal Fuzzy neural Network (STEF-Net) to accurately predict passenger demands incorporating the complex interactions of all known important factors. We design an end-to-end learning framework with different neural networks modeling different factors. Specifically, we propose to capture spatio-temporal feature interactions via a convolutional long short-term memory network and model external factors via a fuzzy neural network that handles data uncertainty significantly better than deterministic methods. To keep the temporal relations when fusing two networks and emphasize discriminative spatio-temporal feature interactions, we employ a novel feature fusion method with a convolution operation and an attention layer. As far as we know, our work is the first to fuse a deep recurrent neural network and a fuzzy neural network to model complex spatial-temporal feature interactions with additional uncertain input features for predictive learning. Experiments on a large-scale real-world dataset show that our model achieves more than 10% improvement over the state-of-the-art approaches.