Haifeng Chen NEC Labs America

Haifeng Chen is the Department Head of the Data Science and System Security Department at NEC Laboratories America. He received his PhD in Computer Engineering from Rutgers University. His research focuses on data mining, system security, and industrial AI. He leads NEC’s work on secure systems, anomaly detection, and AI-driven automation solutions. Based in Princeton, Dr. Chen brings deep expertise in machine learning, anomaly detection, and system health monitoring, with a particular focus on building trustworthy and scalable AI-driven platforms. He has spearheaded numerous high-impact projects, including AI for spacecraft systems, root-cause analysis in cloud environments, and dynamic graph analysis for network security.

His leadership has helped shape the department’s role as a key contributor to NEC’s innovations in fields such as enterprise systems, national defense, and space technology. Dr. Chen holds more than 80 patents and has published over 100 peer-reviewed papers in top-tier venues, earning multiple best paper awards. His contributions extend beyond technical leadership; he serves on program committees for major AI and data science conferences such as SIGKDD and AAAI and has been a panelist for NSF grant reviews. Recognized with NEC’s highest corporate honor, the Contributor of the Year award, Haifeng Chen continues to drive the lab’s efforts in developing real-world, high-impact solutions that merge cutting-edge research with scalable applications across industries.

Posts

NetWalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks

Massive and dynamic networks arise in many practical applications such as social media, security and public health. Given an evolutionary network, it is crucial to detect structural anomalies, such as vertices and edges whose “behaviors” deviate from underlying majority of the network, in a real-time fashion. Recently, network embedding has proven a powerful tool in learning the low-dimensional representations of vertices in networks that can capture and preserve the network structure. However, most existing network embedding approaches are designed for static networks, and thus may not be perfectly suited for a dynamic environment in which the network representation has to be constantly updated. In this paper, we propose a novel approach, NetWalk, for anomaly detection in dynamic networks by learning network representations which can be updated dynamically as the network evolves. We first encode the vertices of the dynamic network to vector representations by clique embedding, which jointly minimizes the pairwise distance of vertex representations of each walk derived from the dynamic networks, and the deep autoencoder reconstruction error serving as a global regularization. The vector representations can be computed with constant space requirements using reservoir sampling. On the basis of the learned low-dimensional vertex representations, a clustering-based technique is employed to incrementally and dynamically detect network anomalies. Compared with existing approaches, NetWalk has several advantages: 1) the network embedding can be updated dynamically, 2) streaming network nodes and edges can be encoded efficiently with constant memory space usage, 3). flexible to be applied on different types of networks, and 4) network anomalies can be detected in real-time. Extensive experiments on four real datasets demonstrate the effectiveness of NetWalk.

TINET: Transferring Knowledge between Invariant Networks

The latent behavior of an information system that can exhibit extreme events, such as system faults or cyber-attacks, is complex. Recently, the invariant network has shown to be a powerful way of characterizing complex system behaviors. Structures and evolutions of the invariance network, in particular, the vanishing correlations, can shed light on identifying causal anomalies and performing system diagnosis. However, due to the dynamic and complex nature of real-world information systems, learning a reliable invariant network in a new environment often requires continuous collecting and analyzing the system surveillance data for several weeks or even months. Although the invariant networks learned from old environments have some common entities and entity relationships, these networks cannot be directly borrowed for the new environment due to the domain variety problem. To avoid the prohibitive time and resource consuming network building process, we propose TINET, a knowledge transfer based model for accelerating invariant network construction. In particular, we first propose an entity estimation model to estimate the probability of each source domain entity that can be included in the final invariant network of the target domain. Then, we propose a dependency construction model for constructing the unbiased dependency relationships by solving a two-constraint optimization problem. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of TINET. We also apply TINET to a real enterprise security system for intrusion detection. TINET achieves superior detection performance at least 20 days lead-lag time in advance with more than 75% accuracy.

Exploiting Graph Regularized Multi-dimensional Hawkes Processes for Modeling Events with Spatio-temporal Characteristics

Multi-dimensional Hawkes processes (MHP) has been widely used for modeling temporal events. However, when MHP was used for modeling events with spatio-temporal characteristics, the spatial information was often ignored despite its importance. In this paper, we introduce a framework to exploit MHP for modeling spatio-temporal events by considering both temporal and spatial information. Specifically, we design a graph regularization method to effectively integrate the prior spatial structure into MHP for learning influence matrix between different locations. Indeed, the prior spatial structure can be first represented as a connection graph. Then, a multi-view method is utilized for the alignment of the prior connection graph and influence matrix while preserving the sparsity and low-rank properties of the kernel matrix. Moreover, we develop an optimization scheme using an alternating direction method of multipliers to solve the resulting optimization problem. Finally, the experimental results show that we are able to learn the interaction patterns between different geographical areas more effectively with prior connection graph introduced for regularization.

Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection

Unsupervised anomaly detection on multi- or high-dimensional data is of great importance in both fundamental machine learning research and industrial applications, for which density estimation lies at the core. Although previous approaches based on dimensionality reduction followed by density estimation have made fruitful progress, they mainly suffer from decoupled model learning with inconsistent optimization goals and incapability of preserving essential information in the low-dimensional space. In this paper, we present a Deep Autoencoding Gaussian Mixture Model (DAGMM) for unsupervised anomaly detection. Our model utilizes a deep autoencoder to generate a low-dimensional representation and reconstruction error for each input data point, which is further fed into a Gaussian Mixture Model (GMM). Instead of using decoupled two-stage training and the standard Expectation-Maximization (EM) algorithm, DAGMM jointly optimizes the parameters of the deep autoencoder and the mixture model simultaneously in an end-to-end fashion, leveraging a separate estimation network to facilitate the parameter learning of the mixture model. The joint optimization, which well balances autoencoding reconstruction, density estimation of latent representation, and regularization, helps the autoencoder escape from less attractive local optima and further reduce reconstruction errors, avoiding the need of pre-training. Experimental results on several public benchmark datasets show that, DAGMM significantly outperforms state-of-the-art anomaly detection techniques, and achieves up to 14% improvement based on the standard F1 score.

Co-Regularized Deep Multi-Network Embedding

Network embedding aims to learn a low-dimensional vector representation for each node in the social and information networks, with the constraint to preserve network structures. Most existing methods focus on single network embedding, ignoring the relationship between multiple networks. In many real-world applications, however, multiple networks may contain complementary information, which can lead to further refined node embeddings. Thus, in this paper, we propose a novel multi-network embedding method, DMNE. DMNE is flexible. It allows different networks to have different sizes, to be (un)weighted and (un)directed. It leverages multiple networks via cross-network relationships between nodes in different networks, which may form many-to-many node mappings, and be associated with weights. To model the non-linearity of the network data, we develop DMNE to have a new deep learning architecture, which coordinates multiple neural networks (one for each input network data) with a co-regularized loss function. With multiple layers of non-linear mappings, DMNE progressively transforms each input network to a highly non-linear latent space, and in the meantime, adapts different spaces to each other through a co-regularized learning schema. Extensive experimental results on real-life datasets demonstrate the effectiveness of our method.