Iain Melvin NEC Labs America

Iain Melvin

Researcher

Machine Learning

Posts

Introducing the Trustworthy Generative AI Project: Pioneering the Future of Compositional Generation and Reasoning

We are thrilled to announce the launch of our latest research initiative, the Trustworthy Generative AI Project. This ambitious project is set to revolutionize how we interact with multimodal content by developing cutting-edge generative models capable of compositional generation and reasoning across text, images, reports, and even 3D videos.

LLMs and MI Bring Innovation to Material Development Platforms

In this paper, we introduce efforts to apply large language models (LLMs) to the field of material development. NEC is advancing the development of a material development platform. By applying core technologies corresponding to two material development steps, namely investigation activities (Read paper/patent) and experimental planning (Design Experiment Plan), the platform organizes documents such as papers and reports as well as data such as experimental results and then presents in an interactive way to users. In addition, with techniquesthat reflect physical and chemical principles into machine learning models, AI can learn even with limited data and accurately predict material properties. Through this platform, we aim to achieve the seamless integration of materials informatics (MI) with a vast body of industry literature and knowledge, thereby bringing innovation to the material development process.

Attend and Interact: Higher-Order Object Interactions for Video Understanding

Human actions often involve complex interactions across several inter-related objects in the scene. However, existing approaches to fine-grained video understanding or visual relationship detection often rely on single object representation or pairwise object relationships. Furthermore, learning interactions across multiple objects in hundreds of frames for video is computationally infeasible and performance may suffer since a large combinatorial space has to be modeled. In this paper, we propose to efficiently learn higher-order interactions between arbitrary subgroups of objects for fine-grained video understanding. We demonstrate that modeling object interactions significantly improves accuracy for both action recognition and video captioning, while saving more than 3-times the computation over traditional pairwise relationships. The proposed method is validated on two large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and SINet-Caption achieve state-of-the-art performances on both datasets even though the videos are sampled at a maximum of 1 FPS. To the best of our knowledge, this is the first work modeling object interactions on open domain large-scale video datasets, and we additionally model higher-order object interactions which improves the performance with low computational costs.