James M. Moore works at Verizon.

Posts

Seeing the Vibration from Fiber-Optic Cables: Rain Intensity Monitoring using Deep Frequency Filtering

The various sensing technologies such as cameras LiDAR radar and satellites with advanced machine learning models offers a comprehensive approach to environmental perception and understanding. This paper introduces an innovative Distributed Fiber Optic Sensing (DFOS) technology utilizing the existing telecommunication infrastructure networks for rain intensity monitoring. DFOS enables a novel way to monitor weather condition and environmental changes provides real-time continuous and precise measurements over large areas and delivers comprehensive insights beyond the visible spectrum. We use rain intensity as an example to demonstrate the sensing capabilities of DFOS system. To enhance the rain sensing performance we introduce a Deep Phase-Magnitude Network (DFMN) divide the raw sensing data into phase and magnitude component allowing targeted feature learning on each component independently. Furthermore we propose a Phase Frequency learnable filter (PFLF) for the phase component filtering and conduct standard convolution layers on the magnitude component leveraging the inherent physical properties of optical fiber sensing. We formulate the phase-magnitude channel into a parallel network and subsequently fuse the features for a comprehensive analysis in the end. Experimental results on the collected fiber sensing data show that the proposed method performs favorably against the state-of-the-art approaches.

NEC Labs America Team Attending CVPR 2024 in Seattle

Our team will be attending CVPR 2024 (The IEEE /CVF Conference on Computer Vision & Pattern Recognition) from June 17-21! See you there at the NEC Labs America Booth 1716! Stay tuned for more information about our participation.

Beyond Communication: Telecom Fiber Networks for Rain Detection and Classification

We present the field trial of an innovative neural network and DAS-based technique, employing a pre-trained CNN fine-tuning strategy for effective rain detection and classification within two practical scenarios.

Perimeter Intrusion Detection with Rayleigh Enhanced Fiber Using Telecom Cables as Sensing Backhaul

We report field test results of facility perimeter intrusion detection with distributed-fiber-sensing technology and backscattering-enhanced-fiber by using deployed telecom fiber cables as sensing backhaul. Various intrusive activities, such as walking/jumping at >100ft distance, are detected.

Detection and Localization of Stationary Weights Hanging on Aerial Telecommunication Fibers using Distributed Acoustic Sensing

For the first time to our knowledge, a stationary weight hanging on an operational aerial telecommunication field fiber was detected and localized using only ambient data collected by a φ-DAS system. Although stationary weights do not create temporally varying signals, and hence cannot be observed directly from the DAS traces, the existence and the location of the additional weights were revealed by the operational modal analysis of the aerial fiber structure.

Field Trial of Cable Safety Protection and Road Traffic Monitoring over Operational 5G Transport Network with Fiber Sensing and On-Premise AI Technologies

We report the distributed-fiber-sensing field trial results over a 5G-transport-network. A standard communication fiber is used with real-time AI processing for cable self-protection, cable-cut threat assessment and road traffic monitoring in a long-term continuous test.