Knowledge Transfer is the process of applying knowledge gained in one context to another context. In the context of machine learning, it often refers to the transfer of knowledge from one task to improve the performance of a model on a related or different task.

Posts

Private-kNN Practical Differential Privacy for Computer Vision

With increasing ethical and legal concerns on privacy for deep models in visual recognition, differential privacy has emerged as a mechanism to disguise membership of sensitive data in training datasets. Recent methods like Private Aggregation of Teacher Ensembles (PATE) leverage a large ensemble of teacher models trained on disjoint subsets of private data, to transfer knowledge to a student model with privacy guarantees. However, labeled vision data is often expensive and datasets, when split into many disjoint training sets, lead to significantly sub-optimal accuracy and thus hardly sustain good privacy bounds. We propose a practically data-efficient scheme based on private release of k-nearest neighbor (kNN) queries, which altogether avoids splitting the training dataset. Our approach allows the use of privacy-amplification by subsampling and iterative refinement of the kNN feature embedding. We rigorously analyze the theoretical properties of our method and demonstrate strong experimental performance on practical computer vision datasets for face attribute recognition and person reidentification. In particular, we achieve comparable or better accuracy than PATE while reducing more than 90% of the privacy loss, thereby providing the “most practical method to-date” for private deep learning in computer vision.

TINET: Transferring Knowledge between Invariant Networks

The latent behavior of an information system that can exhibit extreme events, such as system faults or cyber-attacks, is complex. Recently, the invariant network has shown to be a powerful way of characterizing complex system behaviors. Structures and evolutions of the invariance network, in particular, the vanishing correlations, can shed light on identifying causal anomalies and performing system diagnosis. However, due to the dynamic and complex nature of real-world information systems, learning a reliable invariant network in a new environment often requires continuous collecting and analyzing the system surveillance data for several weeks or even months. Although the invariant networks learned from old environments have some common entities and entity relationships, these networks cannot be directly borrowed for the new environment due to the domain variety problem. To avoid the prohibitive time and resource consuming network building process, we propose TINET, a knowledge transfer based model for accelerating invariant network construction. In particular, we first propose an entity estimation model to estimate the probability of each source domain entity that can be included in the final invariant network of the target domain. Then, we propose a dependency construction model for constructing the unbiased dependency relationships by solving a two-constraint optimization problem. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of TINET. We also apply TINET to a real enterprise security system for intrusion detection. TINET achieves superior detection performance at least 20 days lead-lag time in advance with more than 75% accuracy.