Media Analytics

Read our publications from our Media Analytics team who are overcoming fundamental challenges in computer vision and are addressing critical needs in mobility, security, safety and socially relevant AI. Our team solves fundamental challenges in computer vision, with a focus on understanding and interaction in 3D scenes, representation learning in visual and multimodal data, learning across domains and tasks, as well as responsible AI. Our technological breakthroughs contribute to socially-relevant solutions that address key enterprise needs in mobility, safety and smart spaces.

Posts

Feature Transfer Learning for Face Recognition with Under-Represented Data

Despite the large volume of face recognition datasets, there is a significant portion of subjects, of which the samples are insufficient and thus under-represented. Ignoring such significant portion results in insufficient training data. Training with under-represented data leads to biased classifiers in conventionally-trained deep networks. In this paper, we propose a center-based feature transfer framework to augment the feature space of under-represented subjects from the regular subjects that have sufficiently diverse samples. A Gaussian prior of the variance is assumed across all subjects and the variance from regular ones are transferred to the under-represented ones. This encourages the under-represented distribution to be closer to the regular distribution. Further, an alternating training regimen is proposed to simultaneously achieve less biased classifiers and a more discriminative feature representation. We conduct ablative study to mimic the under-represented datasets by varying the portion of under-represented classes on the MS-Celeb-1M dataset. Advantageous results on LFW, IJB-A and MS-Celeb-1M demonstrate the effectiveness of our feature transfer and training strategy, compared to both general baselines and state-of-the-art methods. Moreover, our feature transfer successfully presents smooth visual interpolation, which conducts disentanglement to preserve identity of a class while augmenting its feature space with non-identity variations such as pose and lighting.

Gotta Adapt ’Em All: Joint Pixel and Feature-Level Domain Adaptation for Recognition in the Wild

Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature level, inspired by insights from semi-supervised learning, we propose a classification-aware domain adversarial neural network that brings target examples into more classifiable regions of source domain. Next, we posit that computer vision insights are more amenable to injection at the pixel level. In particular, we use 3D geometry and image synthesis based on a generalized appearance flow to preserve identity across pose transformations, while using an attribute-conditioned CycleGAN to translate a single source into multiple target images that differ in lower-level properties such as lighting. Besides standard UDA benchmark, we validate on a novel and apt problem of car recognition in unlabeled surveillance images using labeled images from the web, handling explicitly specified, nameable factors of variation through pixel-level and implicit, unspecified factors through feature-level adaptation.

Learning Structure-And-Motion-Aware Rolling Shutter Correction

An exact method of correcting the rolling shutter (RS) effect requires recovering the underlying geometry, i.e. the scene structures and the camera motions between scanlines or between views. However, the multiple-view geometry for RS cameras is much more complicated than its global shutter (GS) counterpart, with various degeneracies. In this paper, we first make a theoretical contribution by showing that RS two-view geometry is degenerate in the case of pure translational camera motion. In view of the complex RS geometry, we then propose a Convolutional Neural Network (CNN)-based method which learns the underlying geometry (camera motion and scene structure) from just a single RS image and perform RS image correction. We call our method structure-and-motion-aware RS correction because it reasons about the concealed motions between the scanlines as well as the scene structure. Our method learns from a large-scale dataset synthesized in a geometrically meaningful way where the RS effect is generated in a manner consistent with the camera motion and scene structure. In extensive experiments, our method achieves superior performance compared to other state-of-the-art methods for single image RS correction and subsequent Structure from Motion (SfM) applications.

Neural Collaborative Subspace Clustering

We introduce the Neural Collaborative Subspace Clustering, a neural model that discovers clusters of data points drawn from a union of low-dimensional subspaces. In contrast to previous attempts, our model runs without the aid of spectral clustering. This makes our algorithm one of the kinds that can gracefully scale to large datasets. At its heart, our neural model benefits from a classifier which determines whether a pair of points lies on the same subspace or not. Essential to our model is the construction of two affinity matrices, one from the classifier and the other from a notion of subspace self-expressiveness, to supervise training in a collaborative scheme. We thoroughly assess and contrast the performance of our model against various state-of-the-art clustering algorithms including deep subspace-based ones.

Unsupervised Domain Adaptation for Distance Metric Learning

Unsupervised domain adaptation is a promising avenue to enhance the performance of deep neural networks on a target domain, using labels only from a source domain. However, the two predominant methods, domain discrepancy reduction learning and semi-supervised learning, are not readily applicable when source and target domains do not share a common label space. This paper addresses the above scenario by learning a representation space that retains discriminative power on both the (labeled) source and (unlabeled) target domains while keeping representations for the two domains well-separated. Inspired by a theoretical analysis, we first reformulate the disjoint classification task, where the source and target domains correspond to non-overlapping class labels, to a verification one. To handle both within and cross domain verifications, we propose a Feature Transfer Network (FTN) to separate the target feature space from the original source space while aligned with a transformed source space. Moreover, we present a non-parametric multi-class entropy minimization loss to further boost the discriminative power of FTNs on the target domain. In experiments, we first illustrate how FTN works in a controlled setting of adapting from MNIST-M to MNIST with disjoint digit classes between the two domains and then demonstrate the effectiveness of FTNs through state-of-the-art performances on a cross-ethnicity face recognition problem.

Learning To Simulate

Simulation is a useful tool in situations where training data for machine learning models is costly to annotate or even hard to acquire. In this work, we propose a reinforcement learning-based method for automatically adjusting the parameters of any (non-differentiable) simulator, thereby controlling the distribution of synthesized data in order to maximize the accuracy of a model trained on that data. In contrast to prior art that hand-crafts these simulation parameters or adjusts only parts of the available parameters, our approach fully controls the simulator with the actual underlying goal of maximizing accuracy, rather than mimicking the real data distribution or randomly generating a large volume of data. We find that our approach (i) quickly converges to the optimal simulation parameters in controlled experiments and (ii) can indeed discover good sets of parameters for an image rendering simulator in actual computer vision applications.

Attentive Conditional Channel-Recurrent Autoencoding for Attribute-Conditioned Face Synthesis

Attribute-conditioned face synthesis has many potential use cases, such as to aid the identification of a suspect or a missing person. Building on top of a conditional version of VAE-GAN, we augment the pathways connecting the latent space with channel-recurrent architecture, in order to provide not only improved generation qualities but also interpretable high-level features. In particular, to better achieve the latter, we further propose an attention mechanism over each attribute to indicate the specific latent subset responsible for its modulation. Thanks to the latent semantics formed via the channel-recurrency, we envision a tool that takes the desired attributes as inputs and then performs a 2-stage general-to-specific generation of diverse and realistic faces. Lastly, we incorporate the progressive-growth training scheme to the inference, generation and discriminator networks of our models to facilitate higher resolution outputs. Evaluations are performed through both qualitative visual examination and quantitative metrics, namely inception scores, human preferences, and attribute classification accuracy.

Memory Warps for Long-Term Online Video Representations and Anticipation

We propose a novel memory-based online video representation that is efficient, accurate and predictive. This is in contrast to prior works that often rely on computationally heavy 3D convolutions, ignore motion when aligning features over time, or operate in an off-line mode to utilize future frames. In particular, our memory (i) holds the feature representation, (ii) is spatially warped over time to compensate for observer and scene motions, (iii) can carry long-term information, and (iv) enables predicting feature representations in future frames. By exploring a variant that operates at multiple temporal scales, we efficiently learn across even longer time horizons. We apply our online framework to object detection in videos, obtaining a large 2.3 times speed-up and losing only 0.9% mAP on ImageNet-VID dataset, compared to prior works that even use future frames. Finally, we demonstrate the predictive property of our representation in two novel detection setups, where features are propagated over time to (i) significantly enhance a real-time detector by more than 10% mAP in a multi-threaded online setup and to (ii) anticipate objects in future frames.

Scalable Deep k-Subspace Clustering

Subspace clustering algorithms are notorious for their scalability issues because building and processing large affinity matrices are demanding. In this paper, we introduce a method that simultaneously learns an embedding space along subspaces within it to minimize a notion of reconstruction error, thus addressing the problem of subspace clustering in an end-to-end learning paradigm. To achieve our goal, we propose a scheme to update subspaces within a deep neural network. This in turn frees us from the need of having an affinity matrix to perform clustering. Unlike previous attempts, our method can easily scale up to large datasets, making it unique in the context of unsupervised learning with deep architectures. Our experiments show that our method significantly improves the clustering accuracy while enjoying cheaper memory footprints.

Unseen Object Segmentation in Videos via Transferable Representations

In order to learn object segmentation models in videos, conventional methods require a large amount of pixel-wise ground truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit existing annotations in source images and transfer such visual information to segment videos with unseen object categories. Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature representations that better adapt to the target frames. The entire process is decomposed into two tasks: (1) solving a submodular function for selecting object-like segments, and (2) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We present an iterative update scheme between two tasks to self-learn the final solution for object segmentation. Experimental results on numerous benchmark datasets show that the proposed method performs favorably against the state-of-the-art algorithms.