Machine LearningOur Machine Learning team has been at the forefront of machine learning developments, including deep learning, support vector machines, and semantic analysis, for over a decade. We develop innovative technologies integrated into NEC’s products and services. Machine learning is the critical technology for data analytics and artificial intelligence. Recent progress in this field opens opportunities for various new applications.

Deep learning will maintain prominence with more robust model architectures, training methods, and optimization techniques. Enhanced interpretability and explainability will be imperative, especially for AI systems in critical domains like healthcare and finance. Addressing bias and ensuring fairness in AI algorithms will be a top priority, leading to the development of tools and guidelines for ethical AI. Federated learning, quantum computing’s potential impact, and the growth of edge computing will diversify ML applications.

Natural language processing will continue to advance, driving progress in conversational AI, while healthcare, finance, education, and creative industries will witness profound AI integration. As quantum computing matures, it could revolutionize machine learning, while edge computing and federated learning will expand AI’s reach across various domains. Our machine learning research will produce innovation across industries, including more accurate medical diagnoses, safer autonomous systems, and efficient energy use while enabling personalized education and AI-generated creativity.

Read our news and publications from our world-class team of researchers from our Machine Learning department.

Posts

NEC Laboratories Advances Material Design with AI-based MateriAI Platform

NEC Laboratories Europe and NEC Laboratories America have developed MateriAI, an AI-based, material design platform that accelerates the development of new, environmentally friendly materials. The prototype platform was initially designed to overcome major hurdles in the creation of new synthetic, organic and bio-based polymers, such as rubber and plastics.

Self-Consistent Decoding for More Factual Open Responses

Self-consistency has emerged as a powerful method for improving the accuracy of short answers generated by large language models. As previously defined, it only concerns the accuracy of a final answer parsed from generated text. In this work, we extend the idea to open response generation, by integrating voting into the decoding method. Each output sentence is selected from among multiple samples, conditioning on the previous selections, based on a simple token overlap score. We compare this “Sample & Select” method to greedy decoding, beam search, nucleus sampling, and the recently introduced hallucination avoiding decoders of DoLa, P-CRR, and S-CRR. We show that Sample & Select improves factuality by a 30% relative margin against these decoders in NLI-based evaluation on the subsets of CNN/DM and XSum used in the FRANK benchmark, while maintaining comparable ROUGE-1 F1 scores against reference summaries. We collect human verifications of the generated summaries, confirming the factual superiority of our method.

Disentangled Wasserstein Autoencoder for T-Cell Receptor Engineering

In protein biophysics, the separation between the functionally important residues (forming the active site or binding surface) and those that create the overall structure (the fold) is a well-established and fundamental concept. Identifying and modifying those functional sites is critical for protein engineering but computationally nontrivial, and requires significant domain knowledge. To automate this process from a data-driven perspective, we propose a disentangled Wasserstein autoencoder with an auxiliary classifier, which isolates the function-related patterns from the rest with theoretical guarantees. This enables one-pass protein sequence editing and improves the understanding of the resulting sequences and editing actionsinvolved. To demonstrate its effectiveness, we apply it to T-cell receptors (TCRs), a well-studied structure-function case. We show that our method can be used to alterthe function of TCRs without changing the structural backbone, outperforming several competing methods in generation quality and efficiency, and requiring only 10% of the running time needed by baseline models. To our knowledge, this is the first approach that utilizes disentangled representations for TCR engineering.

Weakly-supervised Concealed Object Segmentation with SAM-based Pseudo Labeling and Multi-scale Feature Grouping

Weakly-Supervised Concealed Object Segmentation (WSCOS) aims to segment objects well blended with surrounding environments using sparsely-annotated data for model training. It remains a challenging task since (1) it is hard to distinguish concealed objects from the background due to the intrinsic similarity and (2) the sparsely-annotated training data only provide weak supervision for model learning. In this paper, we propose a new WSCOS method to address these two challenges. To tackle the intrinsic similarity challenge, we design a multi-scalefeature grouping module that first groups features at different granularities and then aggregates these grouping results. By grouping similar features together, it encourages segmentation coherence, helping obtain complete segmentation results for both single and multiple-object images. For the weak supervision challenge, we utilize the recently-proposed vision foundation model, “Segment Anything Model (SAM)”, and use the provided sparse annotations as prompts to generate segmentation masks, which are used to train the model. To alleviate the impact oflow-quality segmentation masks, we further propose a series of strategies, including multi-augmentation result ensemble, entropy-based pixel-level weighting, and entropy-based image-level selection. These strategies help provide more reliable supervision to train the segmentation model. We verify the effectiveness of our method on various WSCOS tasks, and experiments demonstrate that our method achieves state-of-the-art performance on these tasks.

Source-Free Domain Adaptive Fundus Image Segmentation with Class-Balanced Mean Teacher

This paper studies source-free domain adaptive fundus image segmentation which aims to adapt a pretrained fundus segmentation model to a target domain using unlabeled images. This is a challenging task because it is highly risky to adapt a model only using unlabeled data. Most existing methods tackle this task mainly by designing techniques to carefully generate pseudo labels from the model’s predictions and use the pseudo labels to train the model. While often obtaining positive adaption effects, these methods suffer from two major issues. First, they tend to be fairly unstable – incorrect pseudo labels abruptly emerged may cause a catastrophic impact on the model. Second, they fail to consider the severe class imbalance of fundus images where the foreground (e.g., cup) region is usually very small. This paper aims to address these two issues by proposing the Class-Balanced Mean Teacher (CBMT) model. CBMT addresses the unstable issue by proposing a weak-strong augmented mean teacher learning scheme where only the teacher model generates pseudo labels from weakly augmented images to train a student model that takes strongly augmented images as input. The teacher is updated as the moving average of the instantly trained student, which could be noisy. This prevents the teacher model from being abruptly impacted by incorrect pseudo-labels. For the class imbalance issue, CBMT proposes a novel loss calibration approach to highlight foreground classes according to global statistics. Experiments show that CBMT well addresses these two issues and outperforms existing methods on multiple benchmarks.

Degradation-Resistant Unfolding Network for Heterogeneous Image Fusion

Heterogeneous image fusion (HIF) aims to enhance image quality by merging complementary information of images captured by different sensors. Early model-based approaches have strong interpretability while being limited by non-adaptive feature extractors with poor generalizability.

Few-Shot Video Classification via Representation Fusion and Promotion Learning

Recent few-shot video classification (FSVC) works achieve promising performance by capturing similarity across support and query samples with different temporal alignment strategies or learning discriminative features via Transformer block within each episode. However, they ignore two important issues: a) It is difficult to capture rich intrinsic action semantics from a limited number of support instances within each task. b) Redundant or irrelevant frames in videos easily weaken the positive influence of discriminative frames. To address these two issues, this paper proposes a novel Representation Fusion and Promotion Learning (RFPL) mechanism with two sub-modules: meta-action learning (MAL) and reinforced image representation (RIR). Concretely, during training stage, we perform online learning for seeking a task-shared meta-action bank to enrich task-specific action representation by injecting global knowledge. Besides, we exploit reinforcement learning to obtain the importance of each frame and refine the representation. This operation maximizes the contribution of discriminative frames to further capture the similarity of support and query samples from the same category. Our RFPL framework is highly flexible that it can be integrated with many existing FSVC methods. Extensive experiments show that RFPL significantly enhances the performance of existing FSVC models when integrated with them.

MSI: Maximize Support-Set Information for Few-Shot Segmentation

Few-Shot Segmentation FSS (Few-shot segmentation) aims to segment a target class using a small number of labeled images (support set). To extract information relevant to the target class, a dominant approach in best performing FSS methods removes background features using a support mask. We observe that this feature excision through a limiting support mask introduces an information bottleneck in several challenging FSS cases, e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary sources of features to generate super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS methods. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves performance by visible margins and leads to faster convergence.

Personalized Semantics Excitation for Federated Image Classification

Federated learning casts a light on the collaboration of distributed local clients with privacy protected to attain a more generic global model. However, significant distribution shift in input/label space across different clients makes it challenging to well generalize to all clients, which motivates personalized federated learning (PFL). Existing PFL methods typically customize the local model by fine-tuning with limited local supervision and the global model regularizer, which secures local specificity but risks ruining the global discriminative knowledge. In this paper, we propose a novel Personalized Semantics Excitation (PSE) mechanism to breakthrough this limitation by exciting and fusing personalized semantics from the global model during local model customization. Specifically, PSE explores channel-wise gradient differentiation across global and local models to identify important low-level semantics mostly from convolutional layers which are embedded into the client-specific training.In addition, PSE deploys the collaboration of global and local models to enrich high-level feature representations and facilitate the robustness of client classifier through a cross-model attention module. Extensive experiments and analysis on various image classification benchmarks demonstrate the effectiveness and advantage of our method over the state-of-the-art PFL methods.

Real-time Intrusion Detection and Impulsive Acoustic Event Classification with Fiber Optic Sensing and Deep Learning Technologies over Telecom Networks

We review various use cases of distributed-fiber-optic-sensing and machine-learning technologies that offer advantages to telecom fiber networks on existing fiber infrastructures. Byleveraging an edge-AI platform, perimeter intrusion detection and impulsive acoustic event classification can be performed locally on-the-fly, ensuring real-time detection with low latency.