Optical Networking and Sensing

Our Optical Networking and Sensing department is leading world-class research into the next generation of optical networks and sensing systems that will power ICT-based social solutions for years. From forward-looking theoretical studies to cutting-edge experiments to world- and industry-first technology field trials, we deliver globally recognized innovation that looks into the future and translates it into present reality. Read our optical networking and sensing news and publications from our team of researchers.

Posts

Remote Drone Detection and Localization with Optical Fiber Microphones and Distributed Acoustic Sensing

We demonstrate the first fiber-optic drone detection method with ultra-highly sensitive optical microphones and distributed acoustic sensor. Accurate drone localization has been achieved through acoustic field mapping and data fusion.

Detection of Road Anomaly Using Distributed Fiber Optic Sensing

Road surface condition can significantly impact the interaction between vehicles and pavement structure, which may even cause high fuel consumption and safety issues of drivers and vehicles. Distributed fiber optic sensing (DFOS) technology is a useful tool to perform continuous and real-time monitoring of traffic and road surface condition. However, it is challenging to process the data for the purpose of road anomaly detection. The study proposed two approaches to detect the road anomaly using DFOS. In the first method, local binary pattern (LBP) histograms were used to extract the features of the images with and without road anomaly, and support vector machine (SVM) combined with principal component analysis (PCA) was adopted as the classifier. The convolutional neural network (CNN) was applied on the binary classification data to analyze the images in the second method. The accuracy and benefits of two methodologies were compared. The vehicle speed was estimated by detecting lines using Hough transform. The feasibility of road anomaly detection using DFOS is proved.

Vibration Detection and Localization using Modified Digital Coherent Telecom Transponders

We demonstrate a vibration detection and localization scheme based on bidirectional transmission of telecom signals with digital coherent detection at the receivers. Optical phase is extracted from the digital signal processing blocks of the coherent receiver, from which the vibration component is extracted by bandpass filtering, and the position along the cable closest to the vibration’s epicenter is recovered by correlation. We demonstrate our scheme first using offline experiment with 200-Gb/s DP-16QAM, and we report field trial results over installed fiber to detect real-world vibration events.

Weight Pruning Techniques for Nonlinear Impairment Compensation using Neural Networks

Neural networks (NNs) are attractive for nonlinear impairment compensation applications in communication systems, such as optical fiber nonlinearity, nonlinearity of driving amplifiers, and nonlinearity of semiconductor optical amplifiers. Without prior knowledge of the transmission link or the hardware characteristics, optimal parameters are completely constructed from a data-driven approach by exploring training datasets, once the NN structure is given. On the other hand, due to computational power and energy consumption, especially in high-speed communication systems, the computational complexity of the optimized NN needs to be confined to the hardware, such as FPGA or ASIC without sacrificing its performance improvement. In this paper, two approaches are presented to accommodate the NN-based algorithms for high-speed communication systems. The first approach is to reduce computational complexity of the NN-based nonlinearity compensation algorithms on the basis of weight pruning (WP). WP can significantly reduce the computational complexity, especially because the nonlinear compensation task studied here results in a sparse NN. The authors have studied an enhanced approach of WP by imposing an additional restriction on the selection of non-zero weights on each hidden layer. The second approach is to implement NNs onto a silicon-photonic integrated platform, enabling power efficiency to be further improved without sacrificing the high-speed operation.

AI-Driven Applications over Telecom Networks by Distributed Fiber Optic Sensing Technologies

By employing distributed fiber optic sensing (DFOS) technologies, field deployed fiber cables can be utilized as not only communication media for data transmissions but also sensing media for continuously monitoring of the physical phenomenon along the entire route. The fiber can be used to monitor ambient environment along the route covering a wide geographic area. With help of artificial intelligence and machine learning (AI/ML) technologies on information processing, many applications can be developed over telecom networks. We review the recent field results and demonstrate how DFOS can work with existing communication channels and provide holistic view of road traffic monitoring included vehicle counts and average vehicle speeds. A long-term wide-area road traffic monitoring system is an efficient way of gathering seasonal vehicle activities which can be applied in future smart city applications. Additionally, DFOS also offers cable cut prevention functions such as cable self-protection and cable cut threat assessment. Detection and localization of abnormal events and evaluating the threat to the cable are realized to protect telecom facilities.

A Dispersion Managed Phase Only Modulation 18 GHz Optoelectronic Oscillator

In this manuscript, we propose and experimentally demonstrate a dispersion-controlled optoelectronic oscillator with phase only modulator at 18 GHz. The generated microwave signal has a phase noise of −108 dBc/Hz at 10 kHz offset frequency and the integrated timing jitter is calculated to be 16.2 fs (1 kHz to 100 MHz) and 20 fs (1kHz to Nyquist).

Multi user Beam Alignment in Presence of Multi path

To overcome the high path loss and the intense shadowing in millimeter wave (mmWave) communications, effective beamforming schemes are required which incorporate narrow beams with high beamforming gains. The mmWave channel consists of a few spatial clusters each associated with an angle of departure (AoD). The narrow beams must be aligned with the channel AoDs to increase the beamforming gain. This is achieved through a procedure called beam alignment (BA). Most of the BA schemes in the literature consider channels with a single dominant path while in practice the channel has a few resolvable paths with different AoDs, hence, such BA schemes may not work correctly in the presence of multi path or at the least do not exploit such multipath to achieve diversity or increase robustness. In this paper, we propose an efficient BA scheme in presence of multi path. The proposed BA scheme transmits probing packets using a set of scanning beams and receives feedback for all the scanning beams at the end of the probing phase from each user. We formulate the BA scheme as minimizing the expected value of the average transmission beamwidth under different policies. The policy is defined as a function from the set of received feedback to the set of transmission beams (TB). In order to maximize the number of possible feedback sequences, we prove that the set of scanning beams (SB) has a special form, namely, Tulip Design. Consequently, we rewrite the minimization problem with a set of linear constraints and a reduced number of variables which is solved by using an efficient greedy algorithm.

Distributed Fiber Sensor Network Using Telecom Cables as Sensing Media: Technology Advancements and Applications

Distributed fiber optic sensing (DFOS) is a rapidly evolving field that allows the existing optical fiber infrastructure for telecommunications to be reused for wide-area sensing. Using the backscattering mechanisms of glass—which includes Rayleigh, Brillouin, and Raman backscatter—it is possible to realize distributed vibration and temperature sensors with good sensitivity at every fiber position, and spatial resolution is determined by the bandwidth of the interrogation signal. In this paper, we will review the main technologies in currently deployed DFOS. We review the digital signal processing operations that are performed to extract the sensing parameters of interest. We report recent distributed vibration sensing, distributed acoustic sensing, and distributed temperature sensing field trial results over an existing network with reconfigurable add/drop multiplexers carrying live telecom traffic, showing that the network is capable of simultaneous traffic and temperature monitoring. We report Brillouin optical time-domain reflectometry experimental results for monitoring static strain on aerial fiber cables suspended on utility poles. Finally, we demonstrate an example of network modification to make passive optical networks compatible with DFOS by adding reflective semiconductor optical amplifiers at optical network units.

Detection and Localization of Stationary Weights Hanging on Aerial Telecommunication Fibers using Distributed Acoustic Sensing

For the first time to our knowledge, a stationary weight hanging on an operational aerial telecommunication field fiber was detected and localized using only ambient data collected by a φ-DAS system. Although stationary weights do not create temporally varying signals, and hence cannot be observed directly from the DAS traces, the existence and the location of the additional weights were revealed by the operational modal analysis of the aerial fiber structure.

Bipolar Cyclic Linear Coding for Brillouin Optical Time Domain Analysis

We demonstrate, for the first time, that cyclic linear pulse coding can be bipolar for BOTDA sensors, breaking the unipolar limitation of linear coding techniques and elevating the coding gain for a given code length.