Rate Adaptation refers to the process of adjusting the transmission rate of data in a communication system based on the prevailing network conditions. In wireless communication, for example, rate adaptation mechanisms dynamically modify the data transmission rate to optimize performance, taking into account factors such as signal strength, interference, and channel conditions. The goal is to maximize throughput and reliability.

Posts

Neuron-Network-based Nonlinearity Compensation Algorithm

A simplified, system-agnostic NLC algorithm based on a neuron network is proposed to pre-distort symbols at transmitter side to demonstrate ~0.6dB Q improvement after 2800km SMF transmission using 32Gbaud DP-16QAM.

Evolution from 8QAM live traffic to PCS 64-QAM with Neural-Network Based Nonlinearity Compensation on 11000 km Open Subsea Cable

We report on the evolution of the longest segment of FASTER cable at 11,017 km, with 8QAM transponders at 4b/s/Hz spectral efficiency (SE) in service. With offline testing, 6 b/s/Hz is further demonstrated using probabilistically shaped 64QAM, and a novel, low complexity nonlinearity compensation technique based on generating a black-box model of the transmission by training an artificial neural network, resulting in the largest SE-distance product 66,102 b/s/Hz-km over live-traffic carrying cable.