Shuji Murakami NEC Labs America

Shuji Murakami

Research Assistant

Optical Networking & Sensing

Posts

Distributed Fiber-Optic Sensor as an Acoustic Communication Receiver Array

A novel acoustic transmission technique using distributed acoustic sensors is introduced. By choosing better incident angles for smaller fading and employing an 8- channel beamformer, over 10KB data is transmitted at a 6.4kbps data rate.

OFDM Signal Transmission Using Distributed Fiber-Optic Acoustic Sensing

Acoustic data transmission with the Orthogonal Frequency Division Multiplexing (OFDM) signal has been demonstrated using a Distributed Acoustic Sensor (DAS) based on Phase-sensitive Optical Time-Domain Reflectometry (?-OTDR).

Distributed Optical Fiber Sensing Using Specialty Optical Fibers

Distributed Optical Fiber Sensing Using Specialty Optical Fibers Distributed fiber optic sensing systems use long section of optical fiber as the sensing media. Therefore, the fiber characteristics determines the sensing capability and performance. In this presentation, various types of specialty optical fibers and their sensing applications will be introduced and discussed.

Multi-parameter distributed fiber sensing with higherorder optical and acoustic modes

Multi-parameter distributed fiber sensing with higherorder optical and acoustic modes We propose a novel multi-parameter sensing technique based on a Brillouin optical time domain reflectometry in the elliptical-core few-mode fiber, using higher-order optical and acoustic modes. Multiple Brillouin peaks are observed for the backscattering of both the LP01 mode and LP11 mode. We characterize the temperature and strain coefficients for various optical–acoustic mode pairs. By selecting the proper combination of modes pairs, the performance of multi-parameter sensing can be optimized. Distributed sensing of temperature and strain is demonstrated over a 0.5-km elliptical-core few-mode fiber, with the discriminative uncertainty of 0.28°C and 5.81 ?? for temperature and strain, respectively.

Distributed Temperature and Strain Sensing Using Brillouin Optical Time Domain Reflectometry Over a Few Mode Elliptical Core Optical Fiber

Distributed Temperature and Strain Sensing Using Brillouin Optical Time Domain Reflectometry Over a Few Mode Elliptical Core Optical Fiber We propose a single-ended Brillouin-based sensor in elliptical-core few-mode optical fiber for multi-parameter measurement using spontaneous Brillouin scattering. Distributed sensing of temperature and strain is demonstrated over 0.5 km elliptical-core few-mode fiber.